Loading…
Flow boiling heat transfer of R134a in a 500 µm ID tube
The present paper presents experimental results for the heat transfer coefficient during flow boiling of refrigerant R134a in a circular channel with internal diameter of 500 µm. The experimental database covers mass velocities ranging from 200 to 800 kg/m 2 s, heat fluxes up to 100 kW/m 2 and vapo...
Saved in:
Published in: | Journal of the Brazilian Society of Mechanical Sciences and Engineering 2020-05, Vol.42 (5), Article 254 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Journal of the Brazilian Society of Mechanical Sciences and Engineering |
container_volume | 42 |
creator | dos Santos Filho, Erivelto Aguiar, Gustavo Matana Ribatski, Gherhardt |
description | The present paper presents experimental results for the heat transfer coefficient during flow boiling of refrigerant R134a in a circular channel with internal diameter of 500 µm. The experimental database covers mass velocities ranging from 200 to 800 kg/m
2
s, heat fluxes up to 100 kW/m
2
and vapor qualities from 0.02 to 0.75 for a saturation temperature of 40 °C. The experimental data were parametrically analyzed and the effects of the experimental parameters (heat flux, mass velocity and vapor quality) identified. Additionally, images of two-phase flow were obtained through a high-speed camera and employed to identify the flow patterns. A flow pattern map was built and compared to prediction methods from the literature. In general, the heat transfer coefficient increased with increasing mass velocity and heat flux. The experimental data were compared against seven flow boiling predictive methods from the literature. Sun and Mishima (Int J Heat Mass Transf 52(23):5323–5329, 2009.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.041
) and Kanizawa et al. (Int J Heat Mass Transf 93:566–583, 2016.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.083
) methods provided the best prediction of the experimental results with only Kanizawa et al. (2016) capturing the experimental heat transfer trends. |
doi_str_mv | 10.1007/s40430-020-02325-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2393620208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393620208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEiVwAVaWWBvGP3GcJSq0VKqEhLq3nGRSUqVJsVMhbsMluEBPhkuQ2LEYzSy-90bvEXLN4ZYDZHdBgZLAQBxHipSJEzLhBjSTOuen8daZYanJzDm5CGEDECGdTkg-a_t3WvRN23Rr-opuoIN3XajR076mL1wqR5uOOpoCHD4PX1u6eKDDvsBLcla7NuDV707Iava4mj6x5fN8Mb1fslJIJVjFC6NSw0ujnUwrB05jJWp0ElWBkAlZoFS8wjxH4aAsXVFXUovKGMdLkAm5GW13vn_bYxjspt_7Ln60QuYRjJlNpMRIlb4PwWNtd77ZOv9hOdhjQ3ZsyEba_jQU1QmRoyhEuFuj_7P-R_UN_ZRnbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393620208</pqid></control><display><type>article</type><title>Flow boiling heat transfer of R134a in a 500 µm ID tube</title><source>Springer Link</source><creator>dos Santos Filho, Erivelto ; Aguiar, Gustavo Matana ; Ribatski, Gherhardt</creator><creatorcontrib>dos Santos Filho, Erivelto ; Aguiar, Gustavo Matana ; Ribatski, Gherhardt</creatorcontrib><description>The present paper presents experimental results for the heat transfer coefficient during flow boiling of refrigerant R134a in a circular channel with internal diameter of 500 µm. The experimental database covers mass velocities ranging from 200 to 800 kg/m
2
s, heat fluxes up to 100 kW/m
2
and vapor qualities from 0.02 to 0.75 for a saturation temperature of 40 °C. The experimental data were parametrically analyzed and the effects of the experimental parameters (heat flux, mass velocity and vapor quality) identified. Additionally, images of two-phase flow were obtained through a high-speed camera and employed to identify the flow patterns. A flow pattern map was built and compared to prediction methods from the literature. In general, the heat transfer coefficient increased with increasing mass velocity and heat flux. The experimental data were compared against seven flow boiling predictive methods from the literature. Sun and Mishima (Int J Heat Mass Transf 52(23):5323–5329, 2009.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.041
) and Kanizawa et al. (Int J Heat Mass Transf 93:566–583, 2016.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.083
) methods provided the best prediction of the experimental results with only Kanizawa et al. (2016) capturing the experimental heat transfer trends.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-020-02325-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boiling ; Engineering ; Flow mapping ; Heat flux ; Heat transfer ; Heat transfer coefficients ; High speed cameras ; Image quality ; Mechanical Engineering ; Parameter identification ; Technical Paper ; Temperature ; Two phase flow</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020-05, Vol.42 (5), Article 254</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2020</rights><rights>The Brazilian Society of Mechanical Sciences and Engineering 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03</citedby><cites>FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03</cites><orcidid>0000-0003-0098-1286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>dos Santos Filho, Erivelto</creatorcontrib><creatorcontrib>Aguiar, Gustavo Matana</creatorcontrib><creatorcontrib>Ribatski, Gherhardt</creatorcontrib><title>Flow boiling heat transfer of R134a in a 500 µm ID tube</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>The present paper presents experimental results for the heat transfer coefficient during flow boiling of refrigerant R134a in a circular channel with internal diameter of 500 µm. The experimental database covers mass velocities ranging from 200 to 800 kg/m
2
s, heat fluxes up to 100 kW/m
2
and vapor qualities from 0.02 to 0.75 for a saturation temperature of 40 °C. The experimental data were parametrically analyzed and the effects of the experimental parameters (heat flux, mass velocity and vapor quality) identified. Additionally, images of two-phase flow were obtained through a high-speed camera and employed to identify the flow patterns. A flow pattern map was built and compared to prediction methods from the literature. In general, the heat transfer coefficient increased with increasing mass velocity and heat flux. The experimental data were compared against seven flow boiling predictive methods from the literature. Sun and Mishima (Int J Heat Mass Transf 52(23):5323–5329, 2009.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.041
) and Kanizawa et al. (Int J Heat Mass Transf 93:566–583, 2016.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.083
) methods provided the best prediction of the experimental results with only Kanizawa et al. (2016) capturing the experimental heat transfer trends.</description><subject>Boiling</subject><subject>Engineering</subject><subject>Flow mapping</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>High speed cameras</subject><subject>Image quality</subject><subject>Mechanical Engineering</subject><subject>Parameter identification</subject><subject>Technical Paper</subject><subject>Temperature</subject><subject>Two phase flow</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEiVwAVaWWBvGP3GcJSq0VKqEhLq3nGRSUqVJsVMhbsMluEBPhkuQ2LEYzSy-90bvEXLN4ZYDZHdBgZLAQBxHipSJEzLhBjSTOuen8daZYanJzDm5CGEDECGdTkg-a_t3WvRN23Rr-opuoIN3XajR076mL1wqR5uOOpoCHD4PX1u6eKDDvsBLcla7NuDV707Iava4mj6x5fN8Mb1fslJIJVjFC6NSw0ujnUwrB05jJWp0ElWBkAlZoFS8wjxH4aAsXVFXUovKGMdLkAm5GW13vn_bYxjspt_7Ln60QuYRjJlNpMRIlb4PwWNtd77ZOv9hOdhjQ3ZsyEba_jQU1QmRoyhEuFuj_7P-R_UN_ZRnbw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>dos Santos Filho, Erivelto</creator><creator>Aguiar, Gustavo Matana</creator><creator>Ribatski, Gherhardt</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0098-1286</orcidid></search><sort><creationdate>20200501</creationdate><title>Flow boiling heat transfer of R134a in a 500 µm ID tube</title><author>dos Santos Filho, Erivelto ; Aguiar, Gustavo Matana ; Ribatski, Gherhardt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boiling</topic><topic>Engineering</topic><topic>Flow mapping</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>High speed cameras</topic><topic>Image quality</topic><topic>Mechanical Engineering</topic><topic>Parameter identification</topic><topic>Technical Paper</topic><topic>Temperature</topic><topic>Two phase flow</topic><toplevel>online_resources</toplevel><creatorcontrib>dos Santos Filho, Erivelto</creatorcontrib><creatorcontrib>Aguiar, Gustavo Matana</creatorcontrib><creatorcontrib>Ribatski, Gherhardt</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos Filho, Erivelto</au><au>Aguiar, Gustavo Matana</au><au>Ribatski, Gherhardt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow boiling heat transfer of R134a in a 500 µm ID tube</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>42</volume><issue>5</issue><artnum>254</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>The present paper presents experimental results for the heat transfer coefficient during flow boiling of refrigerant R134a in a circular channel with internal diameter of 500 µm. The experimental database covers mass velocities ranging from 200 to 800 kg/m
2
s, heat fluxes up to 100 kW/m
2
and vapor qualities from 0.02 to 0.75 for a saturation temperature of 40 °C. The experimental data were parametrically analyzed and the effects of the experimental parameters (heat flux, mass velocity and vapor quality) identified. Additionally, images of two-phase flow were obtained through a high-speed camera and employed to identify the flow patterns. A flow pattern map was built and compared to prediction methods from the literature. In general, the heat transfer coefficient increased with increasing mass velocity and heat flux. The experimental data were compared against seven flow boiling predictive methods from the literature. Sun and Mishima (Int J Heat Mass Transf 52(23):5323–5329, 2009.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.041
) and Kanizawa et al. (Int J Heat Mass Transf 93:566–583, 2016.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.083
) methods provided the best prediction of the experimental results with only Kanizawa et al. (2016) capturing the experimental heat transfer trends.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-020-02325-2</doi><orcidid>https://orcid.org/0000-0003-0098-1286</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1678-5878 |
ispartof | Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020-05, Vol.42 (5), Article 254 |
issn | 1678-5878 1806-3691 |
language | eng |
recordid | cdi_proquest_journals_2393620208 |
source | Springer Link |
subjects | Boiling Engineering Flow mapping Heat flux Heat transfer Heat transfer coefficients High speed cameras Image quality Mechanical Engineering Parameter identification Technical Paper Temperature Two phase flow |
title | Flow boiling heat transfer of R134a in a 500 µm ID tube |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20boiling%20heat%20transfer%20of%20R134a%20in%20a%20500%C2%A0%C2%B5m%20ID%20tube&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=dos%20Santos%20Filho,%20Erivelto&rft.date=2020-05-01&rft.volume=42&rft.issue=5&rft.artnum=254&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-020-02325-2&rft_dat=%3Cproquest_cross%3E2393620208%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2393620208&rft_id=info:pmid/&rfr_iscdi=true |