Loading…

Flow boiling heat transfer of R134a in a 500 µm ID tube

The present paper presents experimental results for the heat transfer coefficient during flow boiling of refrigerant R134a in a circular channel with internal diameter of 500 µm. The experimental database covers mass velocities ranging from 200 to 800 kg/m 2  s, heat fluxes up to 100 kW/m 2 and vapo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Brazilian Society of Mechanical Sciences and Engineering 2020-05, Vol.42 (5), Article 254
Main Authors: dos Santos Filho, Erivelto, Aguiar, Gustavo Matana, Ribatski, Gherhardt
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03
cites cdi_FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03
container_end_page
container_issue 5
container_start_page
container_title Journal of the Brazilian Society of Mechanical Sciences and Engineering
container_volume 42
creator dos Santos Filho, Erivelto
Aguiar, Gustavo Matana
Ribatski, Gherhardt
description The present paper presents experimental results for the heat transfer coefficient during flow boiling of refrigerant R134a in a circular channel with internal diameter of 500 µm. The experimental database covers mass velocities ranging from 200 to 800 kg/m 2  s, heat fluxes up to 100 kW/m 2 and vapor qualities from 0.02 to 0.75 for a saturation temperature of 40 °C. The experimental data were parametrically analyzed and the effects of the experimental parameters (heat flux, mass velocity and vapor quality) identified. Additionally, images of two-phase flow were obtained through a high-speed camera and employed to identify the flow patterns. A flow pattern map was built and compared to prediction methods from the literature. In general, the heat transfer coefficient increased with increasing mass velocity and heat flux. The experimental data were compared against seven flow boiling predictive methods from the literature. Sun and Mishima (Int J Heat Mass Transf 52(23):5323–5329, 2009. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.041 ) and Kanizawa et al. (Int J Heat Mass Transf 93:566–583, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.083 ) methods provided the best prediction of the experimental results with only Kanizawa et al. (2016) capturing the experimental heat transfer trends.
doi_str_mv 10.1007/s40430-020-02325-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2393620208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393620208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEiVwAVaWWBvGP3GcJSq0VKqEhLq3nGRSUqVJsVMhbsMluEBPhkuQ2LEYzSy-90bvEXLN4ZYDZHdBgZLAQBxHipSJEzLhBjSTOuen8daZYanJzDm5CGEDECGdTkg-a_t3WvRN23Rr-opuoIN3XajR076mL1wqR5uOOpoCHD4PX1u6eKDDvsBLcla7NuDV707Iava4mj6x5fN8Mb1fslJIJVjFC6NSw0ujnUwrB05jJWp0ElWBkAlZoFS8wjxH4aAsXVFXUovKGMdLkAm5GW13vn_bYxjspt_7Ln60QuYRjJlNpMRIlb4PwWNtd77ZOv9hOdhjQ3ZsyEba_jQU1QmRoyhEuFuj_7P-R_UN_ZRnbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393620208</pqid></control><display><type>article</type><title>Flow boiling heat transfer of R134a in a 500 µm ID tube</title><source>Springer Link</source><creator>dos Santos Filho, Erivelto ; Aguiar, Gustavo Matana ; Ribatski, Gherhardt</creator><creatorcontrib>dos Santos Filho, Erivelto ; Aguiar, Gustavo Matana ; Ribatski, Gherhardt</creatorcontrib><description>The present paper presents experimental results for the heat transfer coefficient during flow boiling of refrigerant R134a in a circular channel with internal diameter of 500 µm. The experimental database covers mass velocities ranging from 200 to 800 kg/m 2  s, heat fluxes up to 100 kW/m 2 and vapor qualities from 0.02 to 0.75 for a saturation temperature of 40 °C. The experimental data were parametrically analyzed and the effects of the experimental parameters (heat flux, mass velocity and vapor quality) identified. Additionally, images of two-phase flow were obtained through a high-speed camera and employed to identify the flow patterns. A flow pattern map was built and compared to prediction methods from the literature. In general, the heat transfer coefficient increased with increasing mass velocity and heat flux. The experimental data were compared against seven flow boiling predictive methods from the literature. Sun and Mishima (Int J Heat Mass Transf 52(23):5323–5329, 2009. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.041 ) and Kanizawa et al. (Int J Heat Mass Transf 93:566–583, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.083 ) methods provided the best prediction of the experimental results with only Kanizawa et al. (2016) capturing the experimental heat transfer trends.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-020-02325-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boiling ; Engineering ; Flow mapping ; Heat flux ; Heat transfer ; Heat transfer coefficients ; High speed cameras ; Image quality ; Mechanical Engineering ; Parameter identification ; Technical Paper ; Temperature ; Two phase flow</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020-05, Vol.42 (5), Article 254</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2020</rights><rights>The Brazilian Society of Mechanical Sciences and Engineering 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03</citedby><cites>FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03</cites><orcidid>0000-0003-0098-1286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>dos Santos Filho, Erivelto</creatorcontrib><creatorcontrib>Aguiar, Gustavo Matana</creatorcontrib><creatorcontrib>Ribatski, Gherhardt</creatorcontrib><title>Flow boiling heat transfer of R134a in a 500 µm ID tube</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>The present paper presents experimental results for the heat transfer coefficient during flow boiling of refrigerant R134a in a circular channel with internal diameter of 500 µm. The experimental database covers mass velocities ranging from 200 to 800 kg/m 2  s, heat fluxes up to 100 kW/m 2 and vapor qualities from 0.02 to 0.75 for a saturation temperature of 40 °C. The experimental data were parametrically analyzed and the effects of the experimental parameters (heat flux, mass velocity and vapor quality) identified. Additionally, images of two-phase flow were obtained through a high-speed camera and employed to identify the flow patterns. A flow pattern map was built and compared to prediction methods from the literature. In general, the heat transfer coefficient increased with increasing mass velocity and heat flux. The experimental data were compared against seven flow boiling predictive methods from the literature. Sun and Mishima (Int J Heat Mass Transf 52(23):5323–5329, 2009. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.041 ) and Kanizawa et al. (Int J Heat Mass Transf 93:566–583, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.083 ) methods provided the best prediction of the experimental results with only Kanizawa et al. (2016) capturing the experimental heat transfer trends.</description><subject>Boiling</subject><subject>Engineering</subject><subject>Flow mapping</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>High speed cameras</subject><subject>Image quality</subject><subject>Mechanical Engineering</subject><subject>Parameter identification</subject><subject>Technical Paper</subject><subject>Temperature</subject><subject>Two phase flow</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEiVwAVaWWBvGP3GcJSq0VKqEhLq3nGRSUqVJsVMhbsMluEBPhkuQ2LEYzSy-90bvEXLN4ZYDZHdBgZLAQBxHipSJEzLhBjSTOuen8daZYanJzDm5CGEDECGdTkg-a_t3WvRN23Rr-opuoIN3XajR076mL1wqR5uOOpoCHD4PX1u6eKDDvsBLcla7NuDV707Iava4mj6x5fN8Mb1fslJIJVjFC6NSw0ujnUwrB05jJWp0ElWBkAlZoFS8wjxH4aAsXVFXUovKGMdLkAm5GW13vn_bYxjspt_7Ln60QuYRjJlNpMRIlb4PwWNtd77ZOv9hOdhjQ3ZsyEba_jQU1QmRoyhEuFuj_7P-R_UN_ZRnbw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>dos Santos Filho, Erivelto</creator><creator>Aguiar, Gustavo Matana</creator><creator>Ribatski, Gherhardt</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0098-1286</orcidid></search><sort><creationdate>20200501</creationdate><title>Flow boiling heat transfer of R134a in a 500 µm ID tube</title><author>dos Santos Filho, Erivelto ; Aguiar, Gustavo Matana ; Ribatski, Gherhardt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boiling</topic><topic>Engineering</topic><topic>Flow mapping</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>High speed cameras</topic><topic>Image quality</topic><topic>Mechanical Engineering</topic><topic>Parameter identification</topic><topic>Technical Paper</topic><topic>Temperature</topic><topic>Two phase flow</topic><toplevel>online_resources</toplevel><creatorcontrib>dos Santos Filho, Erivelto</creatorcontrib><creatorcontrib>Aguiar, Gustavo Matana</creatorcontrib><creatorcontrib>Ribatski, Gherhardt</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos Filho, Erivelto</au><au>Aguiar, Gustavo Matana</au><au>Ribatski, Gherhardt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow boiling heat transfer of R134a in a 500 µm ID tube</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>42</volume><issue>5</issue><artnum>254</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>The present paper presents experimental results for the heat transfer coefficient during flow boiling of refrigerant R134a in a circular channel with internal diameter of 500 µm. The experimental database covers mass velocities ranging from 200 to 800 kg/m 2  s, heat fluxes up to 100 kW/m 2 and vapor qualities from 0.02 to 0.75 for a saturation temperature of 40 °C. The experimental data were parametrically analyzed and the effects of the experimental parameters (heat flux, mass velocity and vapor quality) identified. Additionally, images of two-phase flow were obtained through a high-speed camera and employed to identify the flow patterns. A flow pattern map was built and compared to prediction methods from the literature. In general, the heat transfer coefficient increased with increasing mass velocity and heat flux. The experimental data were compared against seven flow boiling predictive methods from the literature. Sun and Mishima (Int J Heat Mass Transf 52(23):5323–5329, 2009. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.041 ) and Kanizawa et al. (Int J Heat Mass Transf 93:566–583, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.083 ) methods provided the best prediction of the experimental results with only Kanizawa et al. (2016) capturing the experimental heat transfer trends.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-020-02325-2</doi><orcidid>https://orcid.org/0000-0003-0098-1286</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1678-5878
ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020-05, Vol.42 (5), Article 254
issn 1678-5878
1806-3691
language eng
recordid cdi_proquest_journals_2393620208
source Springer Link
subjects Boiling
Engineering
Flow mapping
Heat flux
Heat transfer
Heat transfer coefficients
High speed cameras
Image quality
Mechanical Engineering
Parameter identification
Technical Paper
Temperature
Two phase flow
title Flow boiling heat transfer of R134a in a 500 µm ID tube
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20boiling%20heat%20transfer%20of%20R134a%20in%20a%20500%C2%A0%C2%B5m%20ID%20tube&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=dos%20Santos%20Filho,%20Erivelto&rft.date=2020-05-01&rft.volume=42&rft.issue=5&rft.artnum=254&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-020-02325-2&rft_dat=%3Cproquest_cross%3E2393620208%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2342-d1b84581c86a35da0a6ed2fea3e4be0723be341de99e2a0ccabfd362d88a1c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2393620208&rft_id=info:pmid/&rfr_iscdi=true