Loading…

PM2.5 monitoring during a 10-year period: relation between elemental concentration and meteorological conditions

Four monitoring campaigns between the years 2009 and 2018 were conducted in Córdoba City, Argentina, to detect toxic metals in PM2.5 samples. The concentrations of As, Cd, Pb, Cu, Cr, Mn, Hg, Ni, and Zn, together with several other elements, were measured. The average metal concentrations followed t...

Full description

Saved in:
Bibliographic Details
Published in:Environmental monitoring and assessment 2020-05, Vol.192 (5), p.313, Article 313
Main Authors: Sanguineti, Pamela B., Lanzaco, Bethania L., López, María Laura, Achad, Mariana, Palancar, Gustavo G., Olcese, Luis E., Toselli, Beatriz M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Four monitoring campaigns between the years 2009 and 2018 were conducted in Córdoba City, Argentina, to detect toxic metals in PM2.5 samples. The concentrations of As, Cd, Pb, Cu, Cr, Mn, Hg, Ni, and Zn, together with several other elements, were measured. The average metal concentrations followed the order: Zn > Cr > Cu > Mn > Pb > V > Ni > As ~ Sb > Cd > Tl > Pd > Hg > Pt. From the analysis of the temporal variation in the elemental concentration of PM2.5, results show seasonal variations that reach, in general, a maximum in the coldest seasons and a minimum in the warmer seasons. These differences could be explained by the different weather conditions during each season, the influence of the El Niño/La Niña regimen, and the presence of fires on certain sampling dates. The source apportionment analysis performed for the period 2017–2018 showed the contribution to PM2.5 of combustion of heavy fuel oil and diesel-powered vehicles, pet coke, metallurgical and nonferrous industries, paint plant factory, traffic, and natural sources like the soil and road dust. This last analysis completed the assignment of sources for the 10-year period of study. Thus, the results of this work contribute to the implementation of emission reduction strategies in order to decrease the impact of PM2.5 on the environment and the human health.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-020-08288-0