Loading…
Aerodynamic database of the HEXAFLY-INT hypersonic glider
The present paper is devoted to the aerodynamic characterization and analysis of the HEXAFLY-INT hypersonic glider, developed in the frame of an international project co-funded by the European Community and the European Space Agency. This project aims to design, manufacture and flight test an innova...
Saved in:
Published in: | CEAS space journal 2020-06, Vol.12 (2), p.295-311 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present paper is devoted to the aerodynamic characterization and analysis of the HEXAFLY-INT hypersonic glider, developed in the frame of an international project co-funded by the European Community and the European Space Agency. This project aims to design, manufacture and flight test an innovative gliding hypersonic vehicle, which is based on the configuration developed in the previous projects LAPCAT I, II (Steelant et al. in 1st International conference on high-speed vehicle science and technology (HiSST), HiSST-2018-3101064, 26–29/11/2018, Moscow, Russia; Steelant in 15th AIAA international space planes and hypersonic systems and technologies conference, AIAA-2008-2578, 28 April–01 May 2008, Dayton, Ohio, USA) and HEXAFLY (Steelant et al. in 21st AIAA international space planes and hypersonic systems and technology conference, AIAA-2017-2393, 6–9 March 2017, Xiamen, China) and other technologies elaborated in ATLLAS I and II (Steelant et al. in 20th AIAA international space planes and hypersonic systems and technologies conference, AIAA-2015-3677, 5–8 July 2015, Glasgow, Scotland, UK; Steelant in 15th AIAA international space planes and hypersonic systems and technologies conference, AIAA-2008-2582, 28 April–01 May 2008, Dayton, Ohio, USA). The flight experiment consists of a self-controlled glider configuration featuring a high aerodynamic efficiency. This flight demonstrator is equipped with an on-board breakthrough sensing and data acquisition system that will provide valuable aero-thermodynamic and thermo-mechanical data. The measured data will serve to validate the design methodologies and demonstrate the technologies that enable hypersonic transportation. The aerodynamic database comprises an extensive set of CFD simulations of increasing level of accuracy, and an experimental test campaign carried out in the TsAGI T-116 wind tunnel. |
---|---|
ISSN: | 1868-2502 1868-2510 |
DOI: | 10.1007/s12567-020-00299-4 |