Loading…

High‐Pressure High‐Temperature Single‐Crystal Diamond Type IIa Characterization for Particle Detectors

Various samples of multisectoral high‐pressure high‐temperature (HPHT) single‐crystal diamond plate (IIa type) (4 × 4 × 0.53 mm) are tested for particle detection applications. The samples are investigated by X‐ray diffractometry, photoluminescence spectroscopy, Raman spectroscopy, Fourier‐transform...

Full description

Saved in:
Bibliographic Details
Published in:Physica status solidi. A, Applications and materials science Applications and materials science, 2020-04, Vol.217 (8), p.n/a
Main Authors: Chernykh, Sergey V., Chernykh, Alexey V., Tarelkin, Sergey A., Kondakov, Mikhail N., Shcherbachev, Kirill D., Trifonova, Ekaterina V., Drozdova, Taisia E., Troschiev, Sergey Yu, Prikhodko, Dmitry D., Glybin, Yury N., Chubenko, Alexander P., Britvich, Gennady I., Kiselev, Dmitry A., Polushin, Nikolay I., Rabinovich, Oleg I., Didenko, Sergey I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4208-46e1135bd12b9f27072415b770aa3869307e1c6962077d434e0d0482211de7b23
cites cdi_FETCH-LOGICAL-c4208-46e1135bd12b9f27072415b770aa3869307e1c6962077d434e0d0482211de7b23
container_end_page n/a
container_issue 8
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 217
creator Chernykh, Sergey V.
Chernykh, Alexey V.
Tarelkin, Sergey A.
Kondakov, Mikhail N.
Shcherbachev, Kirill D.
Trifonova, Ekaterina V.
Drozdova, Taisia E.
Troschiev, Sergey Yu
Prikhodko, Dmitry D.
Glybin, Yury N.
Chubenko, Alexander P.
Britvich, Gennady I.
Kiselev, Dmitry A.
Polushin, Nikolay I.
Rabinovich, Oleg I.
Didenko, Sergey I.
description Various samples of multisectoral high‐pressure high‐temperature (HPHT) single‐crystal diamond plate (IIa type) (4 × 4 × 0.53 mm) are tested for particle detection applications. The samples are investigated by X‐ray diffractometry, photoluminescence spectroscopy, Raman spectroscopy, Fourier‐transform infrared, and visible/ultraviolet (UV) absorption spectroscopy. High crystalline perfection and low impurity concentration (in the {100} growth sector) are observed. To investigate detector parameters, circular 1.0 and 1.5 mm diameter Pt Schottky barrier contacts are created on {111} and {100} growth sectors. On the backside, a Pt contact (3.5 × 3.5 mm) is produced. The {100} growth sector is proved to be a high‐quality detector: the full width at half maximum energy resolution is 0.94% for the 5.489 MeV 226Ra α‐line at an operational bias of +500 V. Therefore, it is concluded that the HPHT material {100} growth sector is used for radiation detector production, whose quality is not worse than the chemical vapor deposition method or specially selected natural diamond detectors. High‐pressure high‐temperature (HPHT) single‐crystal diamond {100} growth sector is used for radiation detector production, The photoluminescence spectroscopy method, X‐ray diffraction (XRD), Raman spectroscopy, Fourier‐transform infrared spectroscopy (FTIR), and visible/ultraviolet (UV) absorption are used for structural investigation. The quality of the grown material is not worse than that grown by the chemical vapor deposition method or specially selected natural diamond detectors.
doi_str_mv 10.1002/pssa.201900888
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2394761423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394761423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4208-46e1135bd12b9f27072415b770aa3869307e1c6962077d434e0d0482211de7b23</originalsourceid><addsrcrecordid>eNqFkE9PwkAQxTdGExG9em7iGZz9Q7c9kqJCQiIJeN5s2yksKW3dXWLqyY_gZ_STWALBo6eZeXlvXvIj5J7CkAKwx8Y5PWRAY4Aoii5Ij0YhG4ScxpfnHeCa3Di3BRAjIWmPlFOz3vx8fS8sOre3GJzuFe4atNofpKWp1iV2YmJb53UZTIze1VUerNoGg9lMB8lGW515tOZTe1NXQVHbYKGtN1mJwQQ9Zr627pZcFbp0eHeaffL2_LRKpoP568ssGc8HmWAQDUSIlPJRmlOWxgWTIJmgo1RK0JpHYcxBIs3COGQgZS64QMhBRIxRmqNMGe-Th-Pfxtbve3Rebeu9rbpKxXgsZEgF451reHRltnbOYqEaa3batoqCOhBVB6LqTLQLxMfAhymx_cetFsvl-C_7C7-rfRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394761423</pqid></control><display><type>article</type><title>High‐Pressure High‐Temperature Single‐Crystal Diamond Type IIa Characterization for Particle Detectors</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chernykh, Sergey V. ; Chernykh, Alexey V. ; Tarelkin, Sergey A. ; Kondakov, Mikhail N. ; Shcherbachev, Kirill D. ; Trifonova, Ekaterina V. ; Drozdova, Taisia E. ; Troschiev, Sergey Yu ; Prikhodko, Dmitry D. ; Glybin, Yury N. ; Chubenko, Alexander P. ; Britvich, Gennady I. ; Kiselev, Dmitry A. ; Polushin, Nikolay I. ; Rabinovich, Oleg I. ; Didenko, Sergey I.</creator><creatorcontrib>Chernykh, Sergey V. ; Chernykh, Alexey V. ; Tarelkin, Sergey A. ; Kondakov, Mikhail N. ; Shcherbachev, Kirill D. ; Trifonova, Ekaterina V. ; Drozdova, Taisia E. ; Troschiev, Sergey Yu ; Prikhodko, Dmitry D. ; Glybin, Yury N. ; Chubenko, Alexander P. ; Britvich, Gennady I. ; Kiselev, Dmitry A. ; Polushin, Nikolay I. ; Rabinovich, Oleg I. ; Didenko, Sergey I.</creatorcontrib><description>Various samples of multisectoral high‐pressure high‐temperature (HPHT) single‐crystal diamond plate (IIa type) (4 × 4 × 0.53 mm) are tested for particle detection applications. The samples are investigated by X‐ray diffractometry, photoluminescence spectroscopy, Raman spectroscopy, Fourier‐transform infrared, and visible/ultraviolet (UV) absorption spectroscopy. High crystalline perfection and low impurity concentration (in the {100} growth sector) are observed. To investigate detector parameters, circular 1.0 and 1.5 mm diameter Pt Schottky barrier contacts are created on {111} and {100} growth sectors. On the backside, a Pt contact (3.5 × 3.5 mm) is produced. The {100} growth sector is proved to be a high‐quality detector: the full width at half maximum energy resolution is 0.94% for the 5.489 MeV 226Ra α‐line at an operational bias of +500 V. Therefore, it is concluded that the HPHT material {100} growth sector is used for radiation detector production, whose quality is not worse than the chemical vapor deposition method or specially selected natural diamond detectors. High‐pressure high‐temperature (HPHT) single‐crystal diamond {100} growth sector is used for radiation detector production, The photoluminescence spectroscopy method, X‐ray diffraction (XRD), Raman spectroscopy, Fourier‐transform infrared spectroscopy (FTIR), and visible/ultraviolet (UV) absorption are used for structural investigation. The quality of the grown material is not worse than that grown by the chemical vapor deposition method or specially selected natural diamond detectors.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900888</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical vapor deposition ; diamond detectors ; Diamonds ; Energy resolution ; high-pressure high-temperature diamonds ; high-pressure high-temperature methods ; multisectorial diamond plates ; particle detectors ; Photoluminescence ; Radiation counters ; Radiation detectors ; Radium 226 ; Raman spectroscopy ; Sensors ; single-crystal diamond ; Spectrum analysis</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-04, Vol.217 (8), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4208-46e1135bd12b9f27072415b770aa3869307e1c6962077d434e0d0482211de7b23</citedby><cites>FETCH-LOGICAL-c4208-46e1135bd12b9f27072415b770aa3869307e1c6962077d434e0d0482211de7b23</cites><orcidid>0000-0002-9164-6186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chernykh, Sergey V.</creatorcontrib><creatorcontrib>Chernykh, Alexey V.</creatorcontrib><creatorcontrib>Tarelkin, Sergey A.</creatorcontrib><creatorcontrib>Kondakov, Mikhail N.</creatorcontrib><creatorcontrib>Shcherbachev, Kirill D.</creatorcontrib><creatorcontrib>Trifonova, Ekaterina V.</creatorcontrib><creatorcontrib>Drozdova, Taisia E.</creatorcontrib><creatorcontrib>Troschiev, Sergey Yu</creatorcontrib><creatorcontrib>Prikhodko, Dmitry D.</creatorcontrib><creatorcontrib>Glybin, Yury N.</creatorcontrib><creatorcontrib>Chubenko, Alexander P.</creatorcontrib><creatorcontrib>Britvich, Gennady I.</creatorcontrib><creatorcontrib>Kiselev, Dmitry A.</creatorcontrib><creatorcontrib>Polushin, Nikolay I.</creatorcontrib><creatorcontrib>Rabinovich, Oleg I.</creatorcontrib><creatorcontrib>Didenko, Sergey I.</creatorcontrib><title>High‐Pressure High‐Temperature Single‐Crystal Diamond Type IIa Characterization for Particle Detectors</title><title>Physica status solidi. A, Applications and materials science</title><description>Various samples of multisectoral high‐pressure high‐temperature (HPHT) single‐crystal diamond plate (IIa type) (4 × 4 × 0.53 mm) are tested for particle detection applications. The samples are investigated by X‐ray diffractometry, photoluminescence spectroscopy, Raman spectroscopy, Fourier‐transform infrared, and visible/ultraviolet (UV) absorption spectroscopy. High crystalline perfection and low impurity concentration (in the {100} growth sector) are observed. To investigate detector parameters, circular 1.0 and 1.5 mm diameter Pt Schottky barrier contacts are created on {111} and {100} growth sectors. On the backside, a Pt contact (3.5 × 3.5 mm) is produced. The {100} growth sector is proved to be a high‐quality detector: the full width at half maximum energy resolution is 0.94% for the 5.489 MeV 226Ra α‐line at an operational bias of +500 V. Therefore, it is concluded that the HPHT material {100} growth sector is used for radiation detector production, whose quality is not worse than the chemical vapor deposition method or specially selected natural diamond detectors. High‐pressure high‐temperature (HPHT) single‐crystal diamond {100} growth sector is used for radiation detector production, The photoluminescence spectroscopy method, X‐ray diffraction (XRD), Raman spectroscopy, Fourier‐transform infrared spectroscopy (FTIR), and visible/ultraviolet (UV) absorption are used for structural investigation. The quality of the grown material is not worse than that grown by the chemical vapor deposition method or specially selected natural diamond detectors.</description><subject>Chemical vapor deposition</subject><subject>diamond detectors</subject><subject>Diamonds</subject><subject>Energy resolution</subject><subject>high-pressure high-temperature diamonds</subject><subject>high-pressure high-temperature methods</subject><subject>multisectorial diamond plates</subject><subject>particle detectors</subject><subject>Photoluminescence</subject><subject>Radiation counters</subject><subject>Radiation detectors</subject><subject>Radium 226</subject><subject>Raman spectroscopy</subject><subject>Sensors</subject><subject>single-crystal diamond</subject><subject>Spectrum analysis</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwkAQxTdGExG9em7iGZz9Q7c9kqJCQiIJeN5s2yksKW3dXWLqyY_gZ_STWALBo6eZeXlvXvIj5J7CkAKwx8Y5PWRAY4Aoii5Ij0YhG4ScxpfnHeCa3Di3BRAjIWmPlFOz3vx8fS8sOre3GJzuFe4atNofpKWp1iV2YmJb53UZTIze1VUerNoGg9lMB8lGW515tOZTe1NXQVHbYKGtN1mJwQQ9Zr627pZcFbp0eHeaffL2_LRKpoP568ssGc8HmWAQDUSIlPJRmlOWxgWTIJmgo1RK0JpHYcxBIs3COGQgZS64QMhBRIxRmqNMGe-Th-Pfxtbve3Rebeu9rbpKxXgsZEgF451reHRltnbOYqEaa3batoqCOhBVB6LqTLQLxMfAhymx_cetFsvl-C_7C7-rfRQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Chernykh, Sergey V.</creator><creator>Chernykh, Alexey V.</creator><creator>Tarelkin, Sergey A.</creator><creator>Kondakov, Mikhail N.</creator><creator>Shcherbachev, Kirill D.</creator><creator>Trifonova, Ekaterina V.</creator><creator>Drozdova, Taisia E.</creator><creator>Troschiev, Sergey Yu</creator><creator>Prikhodko, Dmitry D.</creator><creator>Glybin, Yury N.</creator><creator>Chubenko, Alexander P.</creator><creator>Britvich, Gennady I.</creator><creator>Kiselev, Dmitry A.</creator><creator>Polushin, Nikolay I.</creator><creator>Rabinovich, Oleg I.</creator><creator>Didenko, Sergey I.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9164-6186</orcidid></search><sort><creationdate>202004</creationdate><title>High‐Pressure High‐Temperature Single‐Crystal Diamond Type IIa Characterization for Particle Detectors</title><author>Chernykh, Sergey V. ; Chernykh, Alexey V. ; Tarelkin, Sergey A. ; Kondakov, Mikhail N. ; Shcherbachev, Kirill D. ; Trifonova, Ekaterina V. ; Drozdova, Taisia E. ; Troschiev, Sergey Yu ; Prikhodko, Dmitry D. ; Glybin, Yury N. ; Chubenko, Alexander P. ; Britvich, Gennady I. ; Kiselev, Dmitry A. ; Polushin, Nikolay I. ; Rabinovich, Oleg I. ; Didenko, Sergey I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4208-46e1135bd12b9f27072415b770aa3869307e1c6962077d434e0d0482211de7b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical vapor deposition</topic><topic>diamond detectors</topic><topic>Diamonds</topic><topic>Energy resolution</topic><topic>high-pressure high-temperature diamonds</topic><topic>high-pressure high-temperature methods</topic><topic>multisectorial diamond plates</topic><topic>particle detectors</topic><topic>Photoluminescence</topic><topic>Radiation counters</topic><topic>Radiation detectors</topic><topic>Radium 226</topic><topic>Raman spectroscopy</topic><topic>Sensors</topic><topic>single-crystal diamond</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernykh, Sergey V.</creatorcontrib><creatorcontrib>Chernykh, Alexey V.</creatorcontrib><creatorcontrib>Tarelkin, Sergey A.</creatorcontrib><creatorcontrib>Kondakov, Mikhail N.</creatorcontrib><creatorcontrib>Shcherbachev, Kirill D.</creatorcontrib><creatorcontrib>Trifonova, Ekaterina V.</creatorcontrib><creatorcontrib>Drozdova, Taisia E.</creatorcontrib><creatorcontrib>Troschiev, Sergey Yu</creatorcontrib><creatorcontrib>Prikhodko, Dmitry D.</creatorcontrib><creatorcontrib>Glybin, Yury N.</creatorcontrib><creatorcontrib>Chubenko, Alexander P.</creatorcontrib><creatorcontrib>Britvich, Gennady I.</creatorcontrib><creatorcontrib>Kiselev, Dmitry A.</creatorcontrib><creatorcontrib>Polushin, Nikolay I.</creatorcontrib><creatorcontrib>Rabinovich, Oleg I.</creatorcontrib><creatorcontrib>Didenko, Sergey I.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernykh, Sergey V.</au><au>Chernykh, Alexey V.</au><au>Tarelkin, Sergey A.</au><au>Kondakov, Mikhail N.</au><au>Shcherbachev, Kirill D.</au><au>Trifonova, Ekaterina V.</au><au>Drozdova, Taisia E.</au><au>Troschiev, Sergey Yu</au><au>Prikhodko, Dmitry D.</au><au>Glybin, Yury N.</au><au>Chubenko, Alexander P.</au><au>Britvich, Gennady I.</au><au>Kiselev, Dmitry A.</au><au>Polushin, Nikolay I.</au><au>Rabinovich, Oleg I.</au><au>Didenko, Sergey I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Pressure High‐Temperature Single‐Crystal Diamond Type IIa Characterization for Particle Detectors</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-04</date><risdate>2020</risdate><volume>217</volume><issue>8</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Various samples of multisectoral high‐pressure high‐temperature (HPHT) single‐crystal diamond plate (IIa type) (4 × 4 × 0.53 mm) are tested for particle detection applications. The samples are investigated by X‐ray diffractometry, photoluminescence spectroscopy, Raman spectroscopy, Fourier‐transform infrared, and visible/ultraviolet (UV) absorption spectroscopy. High crystalline perfection and low impurity concentration (in the {100} growth sector) are observed. To investigate detector parameters, circular 1.0 and 1.5 mm diameter Pt Schottky barrier contacts are created on {111} and {100} growth sectors. On the backside, a Pt contact (3.5 × 3.5 mm) is produced. The {100} growth sector is proved to be a high‐quality detector: the full width at half maximum energy resolution is 0.94% for the 5.489 MeV 226Ra α‐line at an operational bias of +500 V. Therefore, it is concluded that the HPHT material {100} growth sector is used for radiation detector production, whose quality is not worse than the chemical vapor deposition method or specially selected natural diamond detectors. High‐pressure high‐temperature (HPHT) single‐crystal diamond {100} growth sector is used for radiation detector production, The photoluminescence spectroscopy method, X‐ray diffraction (XRD), Raman spectroscopy, Fourier‐transform infrared spectroscopy (FTIR), and visible/ultraviolet (UV) absorption are used for structural investigation. The quality of the grown material is not worse than that grown by the chemical vapor deposition method or specially selected natural diamond detectors.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900888</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9164-6186</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2020-04, Vol.217 (8), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2394761423
source Wiley-Blackwell Read & Publish Collection
subjects Chemical vapor deposition
diamond detectors
Diamonds
Energy resolution
high-pressure high-temperature diamonds
high-pressure high-temperature methods
multisectorial diamond plates
particle detectors
Photoluminescence
Radiation counters
Radiation detectors
Radium 226
Raman spectroscopy
Sensors
single-crystal diamond
Spectrum analysis
title High‐Pressure High‐Temperature Single‐Crystal Diamond Type IIa Characterization for Particle Detectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Pressure%20High%E2%80%90Temperature%20Single%E2%80%90Crystal%20Diamond%20Type%20IIa%20Characterization%20for%20Particle%20Detectors&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Chernykh,%20Sergey%20V.&rft.date=2020-04&rft.volume=217&rft.issue=8&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900888&rft_dat=%3Cproquest_cross%3E2394761423%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4208-46e1135bd12b9f27072415b770aa3869307e1c6962077d434e0d0482211de7b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2394761423&rft_id=info:pmid/&rfr_iscdi=true