Loading…

Tracking Pyrometeors With Meteorological Radar Using Unsupervised Machine Learning

Pyrometeors are the large (>2 mm) debris lofted above wildfires that are composed of the by‐products of combustion of the fuels. One speciation of pyrometeor is firebrands, which are burning debris that lead to ignitions ahead of the surface fire and can be the dominant mechanism of fire spread a...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2020-04, Vol.47 (8), p.n/a
Main Authors: McCarthy, N. F., Guyot, A., Protat, A., Dowdy, A. J., McGowan, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3065-86c9e36948e51554c61f91d9c258041b7e6b31e6f744822e449fd02a81293fa73
cites cdi_FETCH-LOGICAL-c3065-86c9e36948e51554c61f91d9c258041b7e6b31e6f744822e449fd02a81293fa73
container_end_page n/a
container_issue 8
container_start_page
container_title Geophysical research letters
container_volume 47
creator McCarthy, N. F.
Guyot, A.
Protat, A.
Dowdy, A. J.
McGowan, H.
description Pyrometeors are the large (>2 mm) debris lofted above wildfires that are composed of the by‐products of combustion of the fuels. One speciation of pyrometeor is firebrands, which are burning debris that lead to ignitions ahead of the surface fire and can be the dominant mechanism of fire spread and structure loss. Pyrometeors are observed by meteorological radar. To date, there have been no investigations into identification of pyrometeor speciation with radar. Here we present an unsupervised machine learning method (Gaussian mixture model) to classify pyrometeor modes using X‐band radar data. The coherent features of the mode of pyrometeor identified most likely to transport firebrands were tracked in time and space. The radar classification and tracking method shows that wildfires do produce signatures in radar returns that could be used for spot fire risk prediction. In wildfires, different types of debris (known as pyrometeors) are lofted in the smoke plumes and transported downwind. Some types of pyrometeors may, when in the air, still be burning and capable of starting new wildfires. Here we investigate the potential for meteorological radar to classify different types of pyrometeors and to track them to determine their potential for starting new fires downwind of the main fire front. Key Points An unsupervised pyrometeor (lofted wildfire debris) classification algorithm is applied to mobile X‐band dual‐polarization radar data Insights on the internal differences of pyrometeors from a wildfire are obtained from the radar data Potential is demonstrated to detect and track pyrometeors with radar including detection of possible firebrands that may ignite spot fires
doi_str_mv 10.1029/2019GL084305
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2394892283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394892283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3065-86c9e36948e51554c61f91d9c258041b7e6b31e6f744822e449fd02a81293fa73</originalsourceid><addsrcrecordid>eNp9kE9PwkAQxTdGExG9-QE28Wp19m93j4YompRoCMRjs2ynUCwt7gKGb28RD548zUzm995LHiHXDO4YcHvPgdlhBkYKUCekx6yUiQFIT0kPwHY7T_U5uYhxCQACBOuR8SQ4_1E1c_q2D-0KN9iGSN-rzYKOfo62bueVdzUdu8IFOo0HdtrE7RrDropY0JHzi6pBmqELTfe9JGelqyNe_c4-mT49TgbPSfY6fBk8ZIkXoFVitLcotJUGFVNKes1KywrruTIg2SxFPRMMdZlKaThHKW1ZAHeGcStKl4o-uTn6rkP7ucW4yZftNjRdZM5FZ2s5N6Kjbo-UD22MAct8HaqVC_ucQX5oLf_bWofzI_5V1bj_l82H40xZ3Ym-AY1PbJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394892283</pqid></control><display><type>article</type><title>Tracking Pyrometeors With Meteorological Radar Using Unsupervised Machine Learning</title><source>Wiley-Blackwell AGU Digital Library</source><creator>McCarthy, N. F. ; Guyot, A. ; Protat, A. ; Dowdy, A. J. ; McGowan, H.</creator><creatorcontrib>McCarthy, N. F. ; Guyot, A. ; Protat, A. ; Dowdy, A. J. ; McGowan, H.</creatorcontrib><description>Pyrometeors are the large (&gt;2 mm) debris lofted above wildfires that are composed of the by‐products of combustion of the fuels. One speciation of pyrometeor is firebrands, which are burning debris that lead to ignitions ahead of the surface fire and can be the dominant mechanism of fire spread and structure loss. Pyrometeors are observed by meteorological radar. To date, there have been no investigations into identification of pyrometeor speciation with radar. Here we present an unsupervised machine learning method (Gaussian mixture model) to classify pyrometeor modes using X‐band radar data. The coherent features of the mode of pyrometeor identified most likely to transport firebrands were tracked in time and space. The radar classification and tracking method shows that wildfires do produce signatures in radar returns that could be used for spot fire risk prediction. In wildfires, different types of debris (known as pyrometeors) are lofted in the smoke plumes and transported downwind. Some types of pyrometeors may, when in the air, still be burning and capable of starting new wildfires. Here we investigate the potential for meteorological radar to classify different types of pyrometeors and to track them to determine their potential for starting new fires downwind of the main fire front. Key Points An unsupervised pyrometeor (lofted wildfire debris) classification algorithm is applied to mobile X‐band dual‐polarization radar data Insights on the internal differences of pyrometeors from a wildfire are obtained from the radar data Potential is demonstrated to detect and track pyrometeors with radar including detection of possible firebrands that may ignite spot fires</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2019GL084305</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Burning ; Classification ; Combustion ; Debris ; Detritus ; Fires ; Gaussian Mixture Model ; Hydrometeor ; Learning algorithms ; Machine Learning ; Meteorological radar ; Plumes ; Probabilistic models ; Pyrometeor ; Radar ; Radar data ; Radar signatures ; Radar tracking ; Smoke ; Smoke plumes ; Speciation ; Unsupervised learning ; Wildfire ; Wildfires ; Wind</subject><ispartof>Geophysical research letters, 2020-04, Vol.47 (8), p.n/a</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3065-86c9e36948e51554c61f91d9c258041b7e6b31e6f744822e449fd02a81293fa73</citedby><cites>FETCH-LOGICAL-c3065-86c9e36948e51554c61f91d9c258041b7e6b31e6f744822e449fd02a81293fa73</cites><orcidid>0000-0002-8933-874X ; 0000-0002-3064-7986 ; 0000-0003-0720-4471 ; 0000-0002-2844-2084 ; 0000-0003-3893-0433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019GL084305$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019GL084305$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>McCarthy, N. F.</creatorcontrib><creatorcontrib>Guyot, A.</creatorcontrib><creatorcontrib>Protat, A.</creatorcontrib><creatorcontrib>Dowdy, A. J.</creatorcontrib><creatorcontrib>McGowan, H.</creatorcontrib><title>Tracking Pyrometeors With Meteorological Radar Using Unsupervised Machine Learning</title><title>Geophysical research letters</title><description>Pyrometeors are the large (&gt;2 mm) debris lofted above wildfires that are composed of the by‐products of combustion of the fuels. One speciation of pyrometeor is firebrands, which are burning debris that lead to ignitions ahead of the surface fire and can be the dominant mechanism of fire spread and structure loss. Pyrometeors are observed by meteorological radar. To date, there have been no investigations into identification of pyrometeor speciation with radar. Here we present an unsupervised machine learning method (Gaussian mixture model) to classify pyrometeor modes using X‐band radar data. The coherent features of the mode of pyrometeor identified most likely to transport firebrands were tracked in time and space. The radar classification and tracking method shows that wildfires do produce signatures in radar returns that could be used for spot fire risk prediction. In wildfires, different types of debris (known as pyrometeors) are lofted in the smoke plumes and transported downwind. Some types of pyrometeors may, when in the air, still be burning and capable of starting new wildfires. Here we investigate the potential for meteorological radar to classify different types of pyrometeors and to track them to determine their potential for starting new fires downwind of the main fire front. Key Points An unsupervised pyrometeor (lofted wildfire debris) classification algorithm is applied to mobile X‐band dual‐polarization radar data Insights on the internal differences of pyrometeors from a wildfire are obtained from the radar data Potential is demonstrated to detect and track pyrometeors with radar including detection of possible firebrands that may ignite spot fires</description><subject>Burning</subject><subject>Classification</subject><subject>Combustion</subject><subject>Debris</subject><subject>Detritus</subject><subject>Fires</subject><subject>Gaussian Mixture Model</subject><subject>Hydrometeor</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Meteorological radar</subject><subject>Plumes</subject><subject>Probabilistic models</subject><subject>Pyrometeor</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar signatures</subject><subject>Radar tracking</subject><subject>Smoke</subject><subject>Smoke plumes</subject><subject>Speciation</subject><subject>Unsupervised learning</subject><subject>Wildfire</subject><subject>Wildfires</subject><subject>Wind</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwkAQxTdGExG9-QE28Wp19m93j4YompRoCMRjs2ynUCwt7gKGb28RD548zUzm995LHiHXDO4YcHvPgdlhBkYKUCekx6yUiQFIT0kPwHY7T_U5uYhxCQACBOuR8SQ4_1E1c_q2D-0KN9iGSN-rzYKOfo62bueVdzUdu8IFOo0HdtrE7RrDropY0JHzi6pBmqELTfe9JGelqyNe_c4-mT49TgbPSfY6fBk8ZIkXoFVitLcotJUGFVNKes1KywrruTIg2SxFPRMMdZlKaThHKW1ZAHeGcStKl4o-uTn6rkP7ucW4yZftNjRdZM5FZ2s5N6Kjbo-UD22MAct8HaqVC_ucQX5oLf_bWofzI_5V1bj_l82H40xZ3Ym-AY1PbJc</recordid><startdate>20200428</startdate><enddate>20200428</enddate><creator>McCarthy, N. F.</creator><creator>Guyot, A.</creator><creator>Protat, A.</creator><creator>Dowdy, A. J.</creator><creator>McGowan, H.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8933-874X</orcidid><orcidid>https://orcid.org/0000-0002-3064-7986</orcidid><orcidid>https://orcid.org/0000-0003-0720-4471</orcidid><orcidid>https://orcid.org/0000-0002-2844-2084</orcidid><orcidid>https://orcid.org/0000-0003-3893-0433</orcidid></search><sort><creationdate>20200428</creationdate><title>Tracking Pyrometeors With Meteorological Radar Using Unsupervised Machine Learning</title><author>McCarthy, N. F. ; Guyot, A. ; Protat, A. ; Dowdy, A. J. ; McGowan, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3065-86c9e36948e51554c61f91d9c258041b7e6b31e6f744822e449fd02a81293fa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Burning</topic><topic>Classification</topic><topic>Combustion</topic><topic>Debris</topic><topic>Detritus</topic><topic>Fires</topic><topic>Gaussian Mixture Model</topic><topic>Hydrometeor</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Meteorological radar</topic><topic>Plumes</topic><topic>Probabilistic models</topic><topic>Pyrometeor</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar signatures</topic><topic>Radar tracking</topic><topic>Smoke</topic><topic>Smoke plumes</topic><topic>Speciation</topic><topic>Unsupervised learning</topic><topic>Wildfire</topic><topic>Wildfires</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCarthy, N. F.</creatorcontrib><creatorcontrib>Guyot, A.</creatorcontrib><creatorcontrib>Protat, A.</creatorcontrib><creatorcontrib>Dowdy, A. J.</creatorcontrib><creatorcontrib>McGowan, H.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCarthy, N. F.</au><au>Guyot, A.</au><au>Protat, A.</au><au>Dowdy, A. J.</au><au>McGowan, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking Pyrometeors With Meteorological Radar Using Unsupervised Machine Learning</atitle><jtitle>Geophysical research letters</jtitle><date>2020-04-28</date><risdate>2020</risdate><volume>47</volume><issue>8</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Pyrometeors are the large (&gt;2 mm) debris lofted above wildfires that are composed of the by‐products of combustion of the fuels. One speciation of pyrometeor is firebrands, which are burning debris that lead to ignitions ahead of the surface fire and can be the dominant mechanism of fire spread and structure loss. Pyrometeors are observed by meteorological radar. To date, there have been no investigations into identification of pyrometeor speciation with radar. Here we present an unsupervised machine learning method (Gaussian mixture model) to classify pyrometeor modes using X‐band radar data. The coherent features of the mode of pyrometeor identified most likely to transport firebrands were tracked in time and space. The radar classification and tracking method shows that wildfires do produce signatures in radar returns that could be used for spot fire risk prediction. In wildfires, different types of debris (known as pyrometeors) are lofted in the smoke plumes and transported downwind. Some types of pyrometeors may, when in the air, still be burning and capable of starting new wildfires. Here we investigate the potential for meteorological radar to classify different types of pyrometeors and to track them to determine their potential for starting new fires downwind of the main fire front. Key Points An unsupervised pyrometeor (lofted wildfire debris) classification algorithm is applied to mobile X‐band dual‐polarization radar data Insights on the internal differences of pyrometeors from a wildfire are obtained from the radar data Potential is demonstrated to detect and track pyrometeors with radar including detection of possible firebrands that may ignite spot fires</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2019GL084305</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8933-874X</orcidid><orcidid>https://orcid.org/0000-0002-3064-7986</orcidid><orcidid>https://orcid.org/0000-0003-0720-4471</orcidid><orcidid>https://orcid.org/0000-0002-2844-2084</orcidid><orcidid>https://orcid.org/0000-0003-3893-0433</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2020-04, Vol.47 (8), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2394892283
source Wiley-Blackwell AGU Digital Library
subjects Burning
Classification
Combustion
Debris
Detritus
Fires
Gaussian Mixture Model
Hydrometeor
Learning algorithms
Machine Learning
Meteorological radar
Plumes
Probabilistic models
Pyrometeor
Radar
Radar data
Radar signatures
Radar tracking
Smoke
Smoke plumes
Speciation
Unsupervised learning
Wildfire
Wildfires
Wind
title Tracking Pyrometeors With Meteorological Radar Using Unsupervised Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A53%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20Pyrometeors%20With%20Meteorological%20Radar%20Using%20Unsupervised%20Machine%20Learning&rft.jtitle=Geophysical%20research%20letters&rft.au=McCarthy,%20N.%20F.&rft.date=2020-04-28&rft.volume=47&rft.issue=8&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2019GL084305&rft_dat=%3Cproquest_cross%3E2394892283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3065-86c9e36948e51554c61f91d9c258041b7e6b31e6f744822e449fd02a81293fa73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2394892283&rft_id=info:pmid/&rfr_iscdi=true