Loading…

Classification and Research of Skin Lesions Based on Machine Learning

Classification of skin lesions is a complex identification challenge. Due to the wide variety of skin lesions, doctors need to spend a lot of time and effort to judge the lesion image which zoomed through the dermatoscopy. The diagnosis which the algorithm of identifying pathological images assists...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua materials & continua, 2020, Vol.62 (3), p.1187-1200
Main Authors: Liu, Jian, Wang, Wantao, Chen, Jie, Sun, Guozhong, Yang, Alan
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Classification of skin lesions is a complex identification challenge. Due to the wide variety of skin lesions, doctors need to spend a lot of time and effort to judge the lesion image which zoomed through the dermatoscopy. The diagnosis which the algorithm of identifying pathological images assists doctors gets more and more attention. With the development of deep learning, the field of image recognition has made longterm progress. The effect of recognizing images through convolutional neural network models is better than traditional image recognition technology. In this work, we try to classify seven kinds of lesion images by various models and methods of deep learning, common models of convolutional neural network in the field of image classification include ResNet, DenseNet and SENet, etc. We use a fine-tuning model with a multi-layer perceptron, by training the skin lesion model, in the validation set and test set we use data expansion based on multiple cropping, and use five models’ ensemble as the final results. The experimental results show that the program has good results in improving the sensitivity of skin lesion diagnosis.
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2020.05883