Loading…
Quantization of Deep Neural Networks for Accumulator-constrained Processors
We introduce an Artificial Neural Network (ANN) quantization methodology for platforms without wide accumulation registers. This enables fixed-point model deployment on embedded compute platforms that are not specifically designed for large kernel computations (i.e. accumulator-constrained processor...
Saved in:
Published in: | arXiv.org 2020-04 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | de Bruin, Barry Zivkovic, Zoran Corporaal, Henk |
description | We introduce an Artificial Neural Network (ANN) quantization methodology for platforms without wide accumulation registers. This enables fixed-point model deployment on embedded compute platforms that are not specifically designed for large kernel computations (i.e. accumulator-constrained processors). We formulate the quantization problem as a function of accumulator size, and aim to maximize the model accuracy by maximizing bit width of input data and weights. To reduce the number of configurations to consider, only solutions that fully utilize the available accumulator bits are being tested. We demonstrate that 16-bit accumulators are able to obtain a classification accuracy within 1\% of the floating-point baselines on the CIFAR-10 and ILSVRC2012 image classification benchmarks. Additionally, a near-optimal \(2\times\) speedup is obtained on an ARM processor, by exploiting 16-bit accumulators for image classification on the All-CNN-C and AlexNet networks. |
doi_str_mv | 10.48550/arxiv.2004.11783 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2395072454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395072454</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-e6c63c7a36c84d126aacafd28f67607b66b4ddde91b0ed1d812202fb9ca9079c3</originalsourceid><addsrcrecordid>eNotzUlLAzEYgOEgCJbaH-At4HnG5Ms2cyx1xeICvZdvssDUOqlZVPz1FvT03N6XkAvOWtkpxa4wfY-fLTAmW85NJ07IDITgTScBzsgi5x1jDLQBpcSMPL5WnMr4g2WME42BXnt_oE--JtwfKV8xvWUaYqJLa-t73WOJqbFxyiXhOHlHX1K0PueY8jk5DbjPfvHvnGxubzar-2b9fPewWq4bVCAbr60W1qDQtpOOg0a0GBx0QRvNzKD1IJ1zvucD8467jgMwCENvsWemt2JOLv-yhxQ_qs9lu4s1TcfjFkSvmAGppPgF5DRQGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395072454</pqid></control><display><type>article</type><title>Quantization of Deep Neural Networks for Accumulator-constrained Processors</title><source>Publicly Available Content Database</source><creator>de Bruin, Barry ; Zivkovic, Zoran ; Corporaal, Henk</creator><creatorcontrib>de Bruin, Barry ; Zivkovic, Zoran ; Corporaal, Henk</creatorcontrib><description>We introduce an Artificial Neural Network (ANN) quantization methodology for platforms without wide accumulation registers. This enables fixed-point model deployment on embedded compute platforms that are not specifically designed for large kernel computations (i.e. accumulator-constrained processors). We formulate the quantization problem as a function of accumulator size, and aim to maximize the model accuracy by maximizing bit width of input data and weights. To reduce the number of configurations to consider, only solutions that fully utilize the available accumulator bits are being tested. We demonstrate that 16-bit accumulators are able to obtain a classification accuracy within 1\% of the floating-point baselines on the CIFAR-10 and ILSVRC2012 image classification benchmarks. Additionally, a near-optimal \(2\times\) speedup is obtained on an ARM processor, by exploiting 16-bit accumulators for image classification on the All-CNN-C and AlexNet networks.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2004.11783</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accumulators ; Artificial neural networks ; Floating point arithmetic ; Image classification ; Measurement ; Microprocessors ; Model accuracy ; Neural networks ; Optimization ; Platforms ; Processors</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2395072454?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25735,27907,36994,44572</link.rule.ids></links><search><creatorcontrib>de Bruin, Barry</creatorcontrib><creatorcontrib>Zivkovic, Zoran</creatorcontrib><creatorcontrib>Corporaal, Henk</creatorcontrib><title>Quantization of Deep Neural Networks for Accumulator-constrained Processors</title><title>arXiv.org</title><description>We introduce an Artificial Neural Network (ANN) quantization methodology for platforms without wide accumulation registers. This enables fixed-point model deployment on embedded compute platforms that are not specifically designed for large kernel computations (i.e. accumulator-constrained processors). We formulate the quantization problem as a function of accumulator size, and aim to maximize the model accuracy by maximizing bit width of input data and weights. To reduce the number of configurations to consider, only solutions that fully utilize the available accumulator bits are being tested. We demonstrate that 16-bit accumulators are able to obtain a classification accuracy within 1\% of the floating-point baselines on the CIFAR-10 and ILSVRC2012 image classification benchmarks. Additionally, a near-optimal \(2\times\) speedup is obtained on an ARM processor, by exploiting 16-bit accumulators for image classification on the All-CNN-C and AlexNet networks.</description><subject>Accumulators</subject><subject>Artificial neural networks</subject><subject>Floating point arithmetic</subject><subject>Image classification</subject><subject>Measurement</subject><subject>Microprocessors</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Platforms</subject><subject>Processors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzUlLAzEYgOEgCJbaH-At4HnG5Ms2cyx1xeICvZdvssDUOqlZVPz1FvT03N6XkAvOWtkpxa4wfY-fLTAmW85NJ07IDITgTScBzsgi5x1jDLQBpcSMPL5WnMr4g2WME42BXnt_oE--JtwfKV8xvWUaYqJLa-t73WOJqbFxyiXhOHlHX1K0PueY8jk5DbjPfvHvnGxubzar-2b9fPewWq4bVCAbr60W1qDQtpOOg0a0GBx0QRvNzKD1IJ1zvucD8467jgMwCENvsWemt2JOLv-yhxQ_qs9lu4s1TcfjFkSvmAGppPgF5DRQGA</recordid><startdate>20200424</startdate><enddate>20200424</enddate><creator>de Bruin, Barry</creator><creator>Zivkovic, Zoran</creator><creator>Corporaal, Henk</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200424</creationdate><title>Quantization of Deep Neural Networks for Accumulator-constrained Processors</title><author>de Bruin, Barry ; Zivkovic, Zoran ; Corporaal, Henk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-e6c63c7a36c84d126aacafd28f67607b66b4ddde91b0ed1d812202fb9ca9079c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulators</topic><topic>Artificial neural networks</topic><topic>Floating point arithmetic</topic><topic>Image classification</topic><topic>Measurement</topic><topic>Microprocessors</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Platforms</topic><topic>Processors</topic><toplevel>online_resources</toplevel><creatorcontrib>de Bruin, Barry</creatorcontrib><creatorcontrib>Zivkovic, Zoran</creatorcontrib><creatorcontrib>Corporaal, Henk</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Bruin, Barry</au><au>Zivkovic, Zoran</au><au>Corporaal, Henk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantization of Deep Neural Networks for Accumulator-constrained Processors</atitle><jtitle>arXiv.org</jtitle><date>2020-04-24</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We introduce an Artificial Neural Network (ANN) quantization methodology for platforms without wide accumulation registers. This enables fixed-point model deployment on embedded compute platforms that are not specifically designed for large kernel computations (i.e. accumulator-constrained processors). We formulate the quantization problem as a function of accumulator size, and aim to maximize the model accuracy by maximizing bit width of input data and weights. To reduce the number of configurations to consider, only solutions that fully utilize the available accumulator bits are being tested. We demonstrate that 16-bit accumulators are able to obtain a classification accuracy within 1\% of the floating-point baselines on the CIFAR-10 and ILSVRC2012 image classification benchmarks. Additionally, a near-optimal \(2\times\) speedup is obtained on an ARM processor, by exploiting 16-bit accumulators for image classification on the All-CNN-C and AlexNet networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2004.11783</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2395072454 |
source | Publicly Available Content Database |
subjects | Accumulators Artificial neural networks Floating point arithmetic Image classification Measurement Microprocessors Model accuracy Neural networks Optimization Platforms Processors |
title | Quantization of Deep Neural Networks for Accumulator-constrained Processors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantization%20of%20Deep%20Neural%20Networks%20for%20Accumulator-constrained%20Processors&rft.jtitle=arXiv.org&rft.au=de%20Bruin,%20Barry&rft.date=2020-04-24&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2004.11783&rft_dat=%3Cproquest%3E2395072454%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-e6c63c7a36c84d126aacafd28f67607b66b4ddde91b0ed1d812202fb9ca9079c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2395072454&rft_id=info:pmid/&rfr_iscdi=true |