Loading…

An oracle penalty and modified augmented Lagrangian methods with firefly algorithm for constrained optimization problems

Almost all engineering optimization problems in the real world are constrained in nature. Swarm intelligence is a bio-inspired technique based on studying and observing fireflies, ants, birds and fish in nature. Firefly algorithm (FA) is the most prominent swarm based metaheuristic algorithm used fo...

Full description

Saved in:
Bibliographic Details
Published in:Operational research 2020-06, Vol.20 (2), p.985-1010
Main Authors: Balande, Umesh, Shrimankar, Deepti
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Almost all engineering optimization problems in the real world are constrained in nature. Swarm intelligence is a bio-inspired technique based on studying and observing fireflies, ants, birds and fish in nature. Firefly algorithm (FA) is the most prominent swarm based metaheuristic algorithm used for solving a global optimization problem. This paper presents two new constrained optimization algorithms: (1) firefly algorithm with extended oracle penalty method (FA-EOPM) and (2) modified augmented Lagrangian with firefly algorithm (MAL-FA). These proposed algorithms are applied for solving classic thirteen benchmark constraint problems as well as a few good engineering problem designs. The efficiency, effectiveness, and performance of MAL-FA and FA-EOPM algorithms are estimated on the basis of statistical analysis such as best optimal value, worst value, mean value, p value and standard deviation value against the existing methods. The experimental results show that the proposed MAL-FA algorithm offers better outcomes for most of the cases in terms of the number of function evaluations compared to various optimization algorithms.
ISSN:1109-2858
1866-1505
DOI:10.1007/s12351-017-0346-1