Loading…
Compact, high-performance, and fabrication friendly two-mode division multiplexer based on a silicon bent directional coupler
In response to the increasing demands of the capacity enhancement of optical communication, a compact and high-performance silicon mode division multiplexer is proposed that multiplexes the fundamental and first-order transverse magnetic modes. The device structure is based on an asymmetric bent dir...
Saved in:
Published in: | Applied optics (2004) 2020-04, Vol.59 (12), p.3645 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In response to the increasing demands of the capacity enhancement of optical communication, a compact and high-performance silicon mode division multiplexer is proposed that multiplexes the fundamental and first-order transverse magnetic modes. The device structure is based on an asymmetric bent directional coupler with an ultrasmall coupling length of 3.67 µm. Utilizing single-layer silicon waveguides with the same heights allows the proposed device to be fabricated using a single-step CMOS-compatible fabrication process, which provides a cost-effective design in comparison with the previously reported structures. The three-dimensional finite-difference time-domain simulation results confirm that the device has a low loss of 0.87 dB, low crosstalk of ${-}{21.8}\;{\rm dB}$-21.8dB, and high mode conversion efficiency of 98.3% at the communication wavelength of 1.55 µm. Furthermore, the device shows a broad bandwidth of about 110 nm, completely covering the C and L bands with crosstalk less than ${-}{10}\;{\rm dB}$-10dB. Moreover, it is shown that the proposed mode (de)multiplexer is fabrication tolerant for the coupling gap variation of ${-}{40}\;{\rm nm} \lt \Delta {g} \lt {23}\;{\rm nm}$-40nm |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.385585 |