Loading…

Solving fuzzy linear systems by a block representation of generalized inverse: the core inverse

This paper presents a method for solving fuzzy linear systems, where the coefficient matrix is an n × n real matrix, using a block structure of the Core inverse, and we use the Hartwig–Spindelböck decomposition to obtain the Core inverse of the coefficient matrix A . The aim of this paper is twofold...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2020-05, Vol.39 (2), Article 133
Main Authors: Jiang, Hongjie, Wang, Hongxing, Liu, Xiaoji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-8fddc061aefe610e3deebdd6a3369a84ea5e857807366cba4c36b1858b3765a93
cites cdi_FETCH-LOGICAL-c319t-8fddc061aefe610e3deebdd6a3369a84ea5e857807366cba4c36b1858b3765a93
container_end_page
container_issue 2
container_start_page
container_title Computational & applied mathematics
container_volume 39
creator Jiang, Hongjie
Wang, Hongxing
Liu, Xiaoji
description This paper presents a method for solving fuzzy linear systems, where the coefficient matrix is an n × n real matrix, using a block structure of the Core inverse, and we use the Hartwig–Spindelböck decomposition to obtain the Core inverse of the coefficient matrix A . The aim of this paper is twofold. First, we obtain a strong fuzzy solution of fuzzy linear systems, and a necessary and sufficient condition for the existence strong fuzzy solution of fuzzy linear systems are derived using the Core inverse of the coefficient matrix A . Second, general strong fuzzy solutions of fuzzy linear systems are derived, and an algorithm for obtaining general strong fuzzy solutions of fuzzy linear systems by Core inverse is also established. Finally, some examples are given to illustrate the validity of the proposed method.
doi_str_mv 10.1007/s40314-020-01156-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2395310790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395310790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8fddc061aefe610e3deebdd6a3369a84ea5e857807366cba4c36b1858b3765a93</originalsourceid><addsrcrecordid>eNp9kMFKw0AQhhdRsFZfwNOC59XZTLJJvEnRKhQ8qOdlk0xqarpbd9NC-vSmRvHmaWD4v3-Yj7FLCdcSIL0JMaCMBUQgQMpECThiE5lBKgAhOmaTKMJMoAI8ZWchrAAwlXE8YfrFtbvGLnm93e973jaWjOehDx2tAy96bnjRuvKDe9p4CmQ70zXOclfzJVnypm32VPHG7sgHuuXdO_HSefrdnLOT2rSBLn7mlL093L_OHsXief40u1uIEmXeiayuqhKUNFSTkkBYERVVpQyiyk0Wk0koS9LhIVSqLExcoipklmQFpioxOU7Z1di78e5zS6HTK7f1djipI8wTlJDmMKSiMVV6F4KnWm98sza-1xL0QaQeRepBpP4WqQ8QjlAYwnZJ_q_6H-oLJkZ3ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395310790</pqid></control><display><type>article</type><title>Solving fuzzy linear systems by a block representation of generalized inverse: the core inverse</title><source>Springer Nature</source><creator>Jiang, Hongjie ; Wang, Hongxing ; Liu, Xiaoji</creator><creatorcontrib>Jiang, Hongjie ; Wang, Hongxing ; Liu, Xiaoji</creatorcontrib><description>This paper presents a method for solving fuzzy linear systems, where the coefficient matrix is an n × n real matrix, using a block structure of the Core inverse, and we use the Hartwig–Spindelböck decomposition to obtain the Core inverse of the coefficient matrix A . The aim of this paper is twofold. First, we obtain a strong fuzzy solution of fuzzy linear systems, and a necessary and sufficient condition for the existence strong fuzzy solution of fuzzy linear systems are derived using the Core inverse of the coefficient matrix A . Second, general strong fuzzy solutions of fuzzy linear systems are derived, and an algorithm for obtaining general strong fuzzy solutions of fuzzy linear systems by Core inverse is also established. Finally, some examples are given to illustrate the validity of the proposed method.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-020-01156-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Coefficients ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Fuzzy systems ; Generalized inverse ; Linear systems ; Mathematical analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Matrix methods</subject><ispartof>Computational &amp; applied mathematics, 2020-05, Vol.39 (2), Article 133</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020</rights><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8fddc061aefe610e3deebdd6a3369a84ea5e857807366cba4c36b1858b3765a93</citedby><cites>FETCH-LOGICAL-c319t-8fddc061aefe610e3deebdd6a3369a84ea5e857807366cba4c36b1858b3765a93</cites><orcidid>0000-0003-2569-0821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jiang, Hongjie</creatorcontrib><creatorcontrib>Wang, Hongxing</creatorcontrib><creatorcontrib>Liu, Xiaoji</creatorcontrib><title>Solving fuzzy linear systems by a block representation of generalized inverse: the core inverse</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>This paper presents a method for solving fuzzy linear systems, where the coefficient matrix is an n × n real matrix, using a block structure of the Core inverse, and we use the Hartwig–Spindelböck decomposition to obtain the Core inverse of the coefficient matrix A . The aim of this paper is twofold. First, we obtain a strong fuzzy solution of fuzzy linear systems, and a necessary and sufficient condition for the existence strong fuzzy solution of fuzzy linear systems are derived using the Core inverse of the coefficient matrix A . Second, general strong fuzzy solutions of fuzzy linear systems are derived, and an algorithm for obtaining general strong fuzzy solutions of fuzzy linear systems by Core inverse is also established. Finally, some examples are given to illustrate the validity of the proposed method.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Coefficients</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Fuzzy systems</subject><subject>Generalized inverse</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AQhhdRsFZfwNOC59XZTLJJvEnRKhQ8qOdlk0xqarpbd9NC-vSmRvHmaWD4v3-Yj7FLCdcSIL0JMaCMBUQgQMpECThiE5lBKgAhOmaTKMJMoAI8ZWchrAAwlXE8YfrFtbvGLnm93e973jaWjOehDx2tAy96bnjRuvKDe9p4CmQ70zXOclfzJVnypm32VPHG7sgHuuXdO_HSefrdnLOT2rSBLn7mlL093L_OHsXief40u1uIEmXeiayuqhKUNFSTkkBYERVVpQyiyk0Wk0koS9LhIVSqLExcoipklmQFpioxOU7Z1di78e5zS6HTK7f1djipI8wTlJDmMKSiMVV6F4KnWm98sza-1xL0QaQeRepBpP4WqQ8QjlAYwnZJ_q_6H-oLJkZ3ZQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Jiang, Hongjie</creator><creator>Wang, Hongxing</creator><creator>Liu, Xiaoji</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2569-0821</orcidid></search><sort><creationdate>20200501</creationdate><title>Solving fuzzy linear systems by a block representation of generalized inverse: the core inverse</title><author>Jiang, Hongjie ; Wang, Hongxing ; Liu, Xiaoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8fddc061aefe610e3deebdd6a3369a84ea5e857807366cba4c36b1858b3765a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Coefficients</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Fuzzy systems</topic><topic>Generalized inverse</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Hongjie</creatorcontrib><creatorcontrib>Wang, Hongxing</creatorcontrib><creatorcontrib>Liu, Xiaoji</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Hongjie</au><au>Wang, Hongxing</au><au>Liu, Xiaoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving fuzzy linear systems by a block representation of generalized inverse: the core inverse</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>39</volume><issue>2</issue><artnum>133</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>This paper presents a method for solving fuzzy linear systems, where the coefficient matrix is an n × n real matrix, using a block structure of the Core inverse, and we use the Hartwig–Spindelböck decomposition to obtain the Core inverse of the coefficient matrix A . The aim of this paper is twofold. First, we obtain a strong fuzzy solution of fuzzy linear systems, and a necessary and sufficient condition for the existence strong fuzzy solution of fuzzy linear systems are derived using the Core inverse of the coefficient matrix A . Second, general strong fuzzy solutions of fuzzy linear systems are derived, and an algorithm for obtaining general strong fuzzy solutions of fuzzy linear systems by Core inverse is also established. Finally, some examples are given to illustrate the validity of the proposed method.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-020-01156-0</doi><orcidid>https://orcid.org/0000-0003-2569-0821</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2020-05, Vol.39 (2), Article 133
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2395310790
source Springer Nature
subjects Algorithms
Applications of Mathematics
Applied physics
Coefficients
Computational mathematics
Computational Mathematics and Numerical Analysis
Fuzzy systems
Generalized inverse
Linear systems
Mathematical analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Matrix methods
title Solving fuzzy linear systems by a block representation of generalized inverse: the core inverse
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20fuzzy%20linear%20systems%20by%20a%20block%20representation%20of%20generalized%20inverse:%20the%20core%20inverse&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Jiang,%20Hongjie&rft.date=2020-05-01&rft.volume=39&rft.issue=2&rft.artnum=133&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-020-01156-0&rft_dat=%3Cproquest_cross%3E2395310790%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8fddc061aefe610e3deebdd6a3369a84ea5e857807366cba4c36b1858b3765a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2395310790&rft_id=info:pmid/&rfr_iscdi=true