Loading…

The effect of maternal dietary fat content and n -6: n -3 ratio on offspring growth and hepatic gene expression in the rat

n-6 Fatty acids have been shown to exert pro-adipogenic effects, whereas n-3 fatty acids work in opposition. Increasing intakes of linoleic acid (LA; n-6) v. α-linolenic acid (ALA; n-3) in Western diets has led to the hypothesis that consumption of this diet during pregnancy may be contributing to a...

Full description

Saved in:
Bibliographic Details
Published in:British journal of nutrition 2020-06, Vol.123 (11), p.1227-1238
Main Authors: Draycott, Sally A V, George, Grace, Elmes, Matthew J, Muhlhausler, Beverly S, Langley-Evans, Simon C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:n-6 Fatty acids have been shown to exert pro-adipogenic effects, whereas n-3 fatty acids work in opposition. Increasing intakes of linoleic acid (LA; n-6) v. α-linolenic acid (ALA; n-3) in Western diets has led to the hypothesis that consumption of this diet during pregnancy may be contributing to adverse offspring health. This study investigated the effects of feeding a maternal dietary LA:ALA ratio similar to that of the Western diet (9:1) compared with a proposed 'ideal' ratio (about 1:1·5), at two total fat levels (18 v. 36 % fat, w/w), on growth and lipogenic gene expression in the offspring. Female Wistar rats were assigned to one of the four experimental groups throughout gestation and lactation. Offspring were culled at 1 and 2 weeks of age for sample collection. Offspring of dams consuming a 36 % fat diet were approximately 20 % lighter than those exposed to an 18 % fat diet (P < 0·001). Male, but not female, liver weight at 1 week was approximately 13 % heavier and had increased glycogen (P < 0·05), in offspring exposed to high LA (P < 0·01). Hepatic expression of lipogenic genes suggested an increase in lipogenesis in male offspring exposed to a 36 % fat maternal diet and in female offspring exposed to a low-LA diet, via increases in the expression of fatty acid synthase and sterol regulatory element-binding protein. Sexually dimorphic responses to altered maternal diet appeared to persist until 2 weeks of age. In conclusion, whilst maternal total fat content predominantly affected offspring growth, fatty acid ratio and total fat content had sexually dimorphic effects on offspring liver weight and composition.
ISSN:0007-1145
1475-2662
DOI:10.1017/S000711452000046X