Loading…

Combining mutagenesis on Glu281 of prenyltransferase NovQ and metabolic engineering strategies for the increased prenylated activity towards menadione

Prenyltransferase NovQ is a vital class involved in the biosynthesis of secondary metabolites such as clorobiocin and novobiocin. To investigate the relationship between structure and catalytic properties of NovQ, here, we have analyzed the substrate-binding site, namely PT barrel, and revealed that...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2020-05, Vol.104 (10), p.4371-4382
Main Authors: Ni, Wenfeng, Zheng, Zhiming, Liu, Hui, Wang, Peng, Wang, Han, Sun, Xiaowen, Yang, Qiang, Fang, Zhiwei, Tang, Hengfang, Zhao, Genhai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-b09a908c381adc9d7fede4ea78c5dfb179d472c3f732dd7e55f9943e945a25ec3
cites cdi_FETCH-LOGICAL-c513t-b09a908c381adc9d7fede4ea78c5dfb179d472c3f732dd7e55f9943e945a25ec3
container_end_page 4382
container_issue 10
container_start_page 4371
container_title Applied microbiology and biotechnology
container_volume 104
creator Ni, Wenfeng
Zheng, Zhiming
Liu, Hui
Wang, Peng
Wang, Han
Sun, Xiaowen
Yang, Qiang
Fang, Zhiwei
Tang, Hengfang
Zhao, Genhai
description Prenyltransferase NovQ is a vital class involved in the biosynthesis of secondary metabolites such as clorobiocin and novobiocin. To investigate the relationship between structure and catalytic properties of NovQ, here, we have analyzed the substrate-binding site, namely PT barrel, and revealed that menadione hydroquinol formed intermolecular interactions with the residue Glu281 near the center of the active pocket. In this study, Glu281 was substituted with 9 diverse amino acids and catalytic properties of mutants were observed in vitro. Among them, E281Q showed 2.05-fold activities towards the aromatic substrate and prenyl donor, while others obtained catalytic efficiency between 8.4 and 88.6% of that of wild-type NovQ. Furthermore, the effects of catalytic conditions and substrate status on the activity of NovQ and its mutants were considered to obtain the optimized prenylated reaction. When the evolutionary NovQ variant E281Q was overexpressed in the host constructed to synthesize dimethylallyl diphosphate through the engineered mevalonate (MVA) pathway, we harvested up to 4.7 mg/L prenylated menadione at C-3 position by exogenously supplying the aromatic substrate. The construction of the microbial platform based on NovQ opens a new orientation to further biosynthesize various vitamin K 2 with other ABBA prenyltransferases in E . coli .
doi_str_mv 10.1007/s00253-020-10470-w
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2396098019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622405769</galeid><sourcerecordid>A622405769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-b09a908c381adc9d7fede4ea78c5dfb179d472c3f732dd7e55f9943e945a25ec3</originalsourceid><addsrcrecordid>eNp9ks2KFDEUhQtRnHb0BVxIwJWLGvNTqVSWQ6PjwKD4tw7p5KbM0JW0SWrafhGf17TdOjSIZBFIvnMuh3ua5jnBFwRj8TpjTDlrMcUtwZ3A7fZBsyAdoy3uSfewWWAieCu4HM6aJznfYkzo0PePmzNGCeXdgBfNz2WcVj74MKJpLnqEANlnFAO6Ws90ICg6tEkQduuSdMgOks6A3se7j0gHiyYoehXX3iAIow8Aae-UK1tg9JCRiwmVb4B8MAmq1B7d6r9F2hR_58sOlbjVyeZqF7T1McDT5pHT6wzPjvd58_Xtmy_Ld-3Nh6vr5eVNazhhpV1hqSUeDBuItkZa4cBCB1oMhlu3IkLaTlDDnGDUWgGcOyk7BrLjmnIw7Lx5efDdpPh9hlzUbZxTqCMVZbLHcsBE3lOjXoPywcUa0Ew-G3XZU9phLvo9dfEPqh4Lkzc1lPP1_UTw6kRQmQI_yqjnnNX150-nLD2wJsWcEzi1SX7SaacIVvs2qEMbVG2D-t0Gta2iF8d082oC-1fyZ_0VYAcgb_aLg3Qf_z-2vwDmpMHi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396098019</pqid></control><display><type>article</type><title>Combining mutagenesis on Glu281 of prenyltransferase NovQ and metabolic engineering strategies for the increased prenylated activity towards menadione</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Ni, Wenfeng ; Zheng, Zhiming ; Liu, Hui ; Wang, Peng ; Wang, Han ; Sun, Xiaowen ; Yang, Qiang ; Fang, Zhiwei ; Tang, Hengfang ; Zhao, Genhai</creator><creatorcontrib>Ni, Wenfeng ; Zheng, Zhiming ; Liu, Hui ; Wang, Peng ; Wang, Han ; Sun, Xiaowen ; Yang, Qiang ; Fang, Zhiwei ; Tang, Hengfang ; Zhao, Genhai</creatorcontrib><description>Prenyltransferase NovQ is a vital class involved in the biosynthesis of secondary metabolites such as clorobiocin and novobiocin. To investigate the relationship between structure and catalytic properties of NovQ, here, we have analyzed the substrate-binding site, namely PT barrel, and revealed that menadione hydroquinol formed intermolecular interactions with the residue Glu281 near the center of the active pocket. In this study, Glu281 was substituted with 9 diverse amino acids and catalytic properties of mutants were observed in vitro. Among them, E281Q showed 2.05-fold activities towards the aromatic substrate and prenyl donor, while others obtained catalytic efficiency between 8.4 and 88.6% of that of wild-type NovQ. Furthermore, the effects of catalytic conditions and substrate status on the activity of NovQ and its mutants were considered to obtain the optimized prenylated reaction. When the evolutionary NovQ variant E281Q was overexpressed in the host constructed to synthesize dimethylallyl diphosphate through the engineered mevalonate (MVA) pathway, we harvested up to 4.7 mg/L prenylated menadione at C-3 position by exogenously supplying the aromatic substrate. The construction of the microbial platform based on NovQ opens a new orientation to further biosynthesize various vitamin K 2 with other ABBA prenyltransferases in E . coli .</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10470-w</identifier><identifier>PMID: 32125480</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino Acid Substitution ; Amino acids ; Analysis ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding sites ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Catalysis ; Dimethylallyltranstransferase - genetics ; Dimethylallyltranstransferase - metabolism ; E coli ; Escherichia coli - genetics ; Glutamine - genetics ; Kinetics ; Life Sciences ; Menadione ; Menaquinones ; Metabolic engineering ; Metabolic Engineering - methods ; Metabolites ; Mevalonate pathway ; Mevalonic acid ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Mutagenesis ; Mutants ; Novobiocin ; Plant metabolites ; Prenyltransferases ; Protein Prenylation ; Secondary metabolites ; Streptomyces - enzymology ; Streptomyces - genetics ; Substrate Specificity ; Substrates ; Vitamin K 3 - metabolism ; Vitamins - metabolism</subject><ispartof>Applied microbiology and biotechnology, 2020-05, Vol.104 (10), p.4371-4382</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020. corrected publication 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020. corrected publication 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-b09a908c381adc9d7fede4ea78c5dfb179d472c3f732dd7e55f9943e945a25ec3</citedby><cites>FETCH-LOGICAL-c513t-b09a908c381adc9d7fede4ea78c5dfb179d472c3f732dd7e55f9943e945a25ec3</cites><orcidid>0000-0002-0550-8087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2396098019/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2396098019?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,44344,74644</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32125480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Wenfeng</creatorcontrib><creatorcontrib>Zheng, Zhiming</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Sun, Xiaowen</creatorcontrib><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Fang, Zhiwei</creatorcontrib><creatorcontrib>Tang, Hengfang</creatorcontrib><creatorcontrib>Zhao, Genhai</creatorcontrib><title>Combining mutagenesis on Glu281 of prenyltransferase NovQ and metabolic engineering strategies for the increased prenylated activity towards menadione</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Prenyltransferase NovQ is a vital class involved in the biosynthesis of secondary metabolites such as clorobiocin and novobiocin. To investigate the relationship between structure and catalytic properties of NovQ, here, we have analyzed the substrate-binding site, namely PT barrel, and revealed that menadione hydroquinol formed intermolecular interactions with the residue Glu281 near the center of the active pocket. In this study, Glu281 was substituted with 9 diverse amino acids and catalytic properties of mutants were observed in vitro. Among them, E281Q showed 2.05-fold activities towards the aromatic substrate and prenyl donor, while others obtained catalytic efficiency between 8.4 and 88.6% of that of wild-type NovQ. Furthermore, the effects of catalytic conditions and substrate status on the activity of NovQ and its mutants were considered to obtain the optimized prenylated reaction. When the evolutionary NovQ variant E281Q was overexpressed in the host constructed to synthesize dimethylallyl diphosphate through the engineered mevalonate (MVA) pathway, we harvested up to 4.7 mg/L prenylated menadione at C-3 position by exogenously supplying the aromatic substrate. The construction of the microbial platform based on NovQ opens a new orientation to further biosynthesize various vitamin K 2 with other ABBA prenyltransferases in E . coli .</description><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Dimethylallyltranstransferase - genetics</subject><subject>Dimethylallyltranstransferase - metabolism</subject><subject>E coli</subject><subject>Escherichia coli - genetics</subject><subject>Glutamine - genetics</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Menadione</subject><subject>Menaquinones</subject><subject>Metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolites</subject><subject>Mevalonate pathway</subject><subject>Mevalonic acid</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Novobiocin</subject><subject>Plant metabolites</subject><subject>Prenyltransferases</subject><subject>Protein Prenylation</subject><subject>Secondary metabolites</subject><subject>Streptomyces - enzymology</subject><subject>Streptomyces - genetics</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Vitamin K 3 - metabolism</subject><subject>Vitamins - metabolism</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9ks2KFDEUhQtRnHb0BVxIwJWLGvNTqVSWQ6PjwKD4tw7p5KbM0JW0SWrafhGf17TdOjSIZBFIvnMuh3ua5jnBFwRj8TpjTDlrMcUtwZ3A7fZBsyAdoy3uSfewWWAieCu4HM6aJznfYkzo0PePmzNGCeXdgBfNz2WcVj74MKJpLnqEANlnFAO6Ws90ICg6tEkQduuSdMgOks6A3se7j0gHiyYoehXX3iAIow8Aae-UK1tg9JCRiwmVb4B8MAmq1B7d6r9F2hR_58sOlbjVyeZqF7T1McDT5pHT6wzPjvd58_Xtmy_Ld-3Nh6vr5eVNazhhpV1hqSUeDBuItkZa4cBCB1oMhlu3IkLaTlDDnGDUWgGcOyk7BrLjmnIw7Lx5efDdpPh9hlzUbZxTqCMVZbLHcsBE3lOjXoPywcUa0Ew-G3XZU9phLvo9dfEPqh4Lkzc1lPP1_UTw6kRQmQI_yqjnnNX150-nLD2wJsWcEzi1SX7SaacIVvs2qEMbVG2D-t0Gta2iF8d082oC-1fyZ_0VYAcgb_aLg3Qf_z-2vwDmpMHi</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ni, Wenfeng</creator><creator>Zheng, Zhiming</creator><creator>Liu, Hui</creator><creator>Wang, Peng</creator><creator>Wang, Han</creator><creator>Sun, Xiaowen</creator><creator>Yang, Qiang</creator><creator>Fang, Zhiwei</creator><creator>Tang, Hengfang</creator><creator>Zhao, Genhai</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0550-8087</orcidid></search><sort><creationdate>20200501</creationdate><title>Combining mutagenesis on Glu281 of prenyltransferase NovQ and metabolic engineering strategies for the increased prenylated activity towards menadione</title><author>Ni, Wenfeng ; Zheng, Zhiming ; Liu, Hui ; Wang, Peng ; Wang, Han ; Sun, Xiaowen ; Yang, Qiang ; Fang, Zhiwei ; Tang, Hengfang ; Zhao, Genhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-b09a908c381adc9d7fede4ea78c5dfb179d472c3f732dd7e55f9943e945a25ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Dimethylallyltranstransferase - genetics</topic><topic>Dimethylallyltranstransferase - metabolism</topic><topic>E coli</topic><topic>Escherichia coli - genetics</topic><topic>Glutamine - genetics</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Menadione</topic><topic>Menaquinones</topic><topic>Metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolites</topic><topic>Mevalonate pathway</topic><topic>Mevalonic acid</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Novobiocin</topic><topic>Plant metabolites</topic><topic>Prenyltransferases</topic><topic>Protein Prenylation</topic><topic>Secondary metabolites</topic><topic>Streptomyces - enzymology</topic><topic>Streptomyces - genetics</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Vitamin K 3 - metabolism</topic><topic>Vitamins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Wenfeng</creatorcontrib><creatorcontrib>Zheng, Zhiming</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Sun, Xiaowen</creatorcontrib><creatorcontrib>Yang, Qiang</creatorcontrib><creatorcontrib>Fang, Zhiwei</creatorcontrib><creatorcontrib>Tang, Hengfang</creatorcontrib><creatorcontrib>Zhao, Genhai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Wenfeng</au><au>Zheng, Zhiming</au><au>Liu, Hui</au><au>Wang, Peng</au><au>Wang, Han</au><au>Sun, Xiaowen</au><au>Yang, Qiang</au><au>Fang, Zhiwei</au><au>Tang, Hengfang</au><au>Zhao, Genhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining mutagenesis on Glu281 of prenyltransferase NovQ and metabolic engineering strategies for the increased prenylated activity towards menadione</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>104</volume><issue>10</issue><spage>4371</spage><epage>4382</epage><pages>4371-4382</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Prenyltransferase NovQ is a vital class involved in the biosynthesis of secondary metabolites such as clorobiocin and novobiocin. To investigate the relationship between structure and catalytic properties of NovQ, here, we have analyzed the substrate-binding site, namely PT barrel, and revealed that menadione hydroquinol formed intermolecular interactions with the residue Glu281 near the center of the active pocket. In this study, Glu281 was substituted with 9 diverse amino acids and catalytic properties of mutants were observed in vitro. Among them, E281Q showed 2.05-fold activities towards the aromatic substrate and prenyl donor, while others obtained catalytic efficiency between 8.4 and 88.6% of that of wild-type NovQ. Furthermore, the effects of catalytic conditions and substrate status on the activity of NovQ and its mutants were considered to obtain the optimized prenylated reaction. When the evolutionary NovQ variant E281Q was overexpressed in the host constructed to synthesize dimethylallyl diphosphate through the engineered mevalonate (MVA) pathway, we harvested up to 4.7 mg/L prenylated menadione at C-3 position by exogenously supplying the aromatic substrate. The construction of the microbial platform based on NovQ opens a new orientation to further biosynthesize various vitamin K 2 with other ABBA prenyltransferases in E . coli .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32125480</pmid><doi>10.1007/s00253-020-10470-w</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0550-8087</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2020-05, Vol.104 (10), p.4371-4382
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_journals_2396098019
source ABI/INFORM Global; Springer Nature
subjects Amino Acid Substitution
Amino acids
Analysis
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding sites
Biomedical and Life Sciences
Biosynthesis
Biotechnologically Relevant Enzymes and Proteins
Biotechnology
Catalysis
Dimethylallyltranstransferase - genetics
Dimethylallyltranstransferase - metabolism
E coli
Escherichia coli - genetics
Glutamine - genetics
Kinetics
Life Sciences
Menadione
Menaquinones
Metabolic engineering
Metabolic Engineering - methods
Metabolites
Mevalonate pathway
Mevalonic acid
Microbial Genetics and Genomics
Microbiology
Microorganisms
Mutagenesis
Mutants
Novobiocin
Plant metabolites
Prenyltransferases
Protein Prenylation
Secondary metabolites
Streptomyces - enzymology
Streptomyces - genetics
Substrate Specificity
Substrates
Vitamin K 3 - metabolism
Vitamins - metabolism
title Combining mutagenesis on Glu281 of prenyltransferase NovQ and metabolic engineering strategies for the increased prenylated activity towards menadione
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20mutagenesis%20on%20Glu281%20of%20prenyltransferase%20NovQ%20and%20metabolic%20engineering%20strategies%20for%20the%20increased%20prenylated%20activity%20towards%20menadione&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Ni,%20Wenfeng&rft.date=2020-05-01&rft.volume=104&rft.issue=10&rft.spage=4371&rft.epage=4382&rft.pages=4371-4382&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10470-w&rft_dat=%3Cgale_proqu%3EA622405769%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-b09a908c381adc9d7fede4ea78c5dfb179d472c3f732dd7e55f9943e945a25ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2396098019&rft_id=info:pmid/32125480&rft_galeid=A622405769&rfr_iscdi=true