Loading…
Physiological and biochemical responses of Amaranthus cruentus to polycyclic aromatic hydrocarbon pollution caused by thermal power units
Pollution due to release of polycyclic aromatic hydrocarbons from thermal power plants is a major global issue as the same is highly toxic and carcinogenic. The current research aims to investigate the responses of a dietary plant Amaranthus cruentus towards PAH pollution. For the said purpose, the...
Saved in:
Published in: | Environmental science and pollution research international 2020-05, Vol.27 (13), p.14790-14806 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pollution due to release of polycyclic aromatic hydrocarbons from thermal power plants is a major global issue as the same is highly toxic and carcinogenic. The current research aims to investigate the responses of a dietary plant
Amaranthus cruentus
towards PAH pollution. For the said purpose, the plant was collected from agricultural land in close vicinity to thermal power units and the effects of PAH pollution on its chlorophyll and various nutraceutical content was evaluated. Oxidative stress biomarkers and antioxidant defense enzymes status and PAH accumulation was quantified as well. Real-time evidence of cell death, depletion of nutraceutical resources, and stomata configuration was generated through various histochemical studies and SEM analysis. Results indicated significant decline of chlorophyll a to the extent of 77% when compared to control. Oxidative stress markers, namely, superoxide radical, H
2
O
2
, and hydroxyl radical in pollution exposed plants were 12.7, 2.2, and 2.4 times respectively higher over the control which eventually resulted in 35% more cell death for the pollution exposed group. Total phenolics and flavonoids showed a decline of 57.6% and 41.3% respectively in the group exposed to PAH pollution. Similar decreasing trend was also observed for ascorbic acid, α-tocopherol, β-carotene, total proteins, and carbohydrate contents as well. PAH-induced stress also resulted in complete imbalance in the redox homeostasis of the plant which was evident from increase in super oxide dismutase, catalase, and peroxidase antioxidant enzymes by more than 2-fold when compared to control. PAH accumulation in sample group was 10–20 times more when compared to control. Proteomic analysis also indicated upregulation of some proteins related to stress situation. Results are evident of the fact that severe depletion of nutraceutical resources of dietary plants can take place if subjected to oxidative stress arising from PAH pollution. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-020-07971-6 |