Loading…
Automated Physics-Derived Code Generation for Sensor Fusion and State Estimation
We present a new method for automatically generating the implementation of state-estimation algorithms from a machine-readable specification of the physics of a sensing system and physics of its signals and signal constraints. We implement the new state-estimator code generation method as a backend...
Saved in:
Published in: | arXiv.org 2020-04 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kaparounakis, Orestis Tsoutsouras, Vasileios Soudris, Dimitrios Stanley-Marbell, Phillip |
description | We present a new method for automatically generating the implementation of state-estimation algorithms from a machine-readable specification of the physics of a sensing system and physics of its signals and signal constraints. We implement the new state-estimator code generation method as a backend for a physics specification language and we apply the backend to generate complete C code implementations of state estimators for both linear systems (Kalman filters) and non-linear systems (extended Kalman filters). The state estimator code generation from physics specification is completely automated and requires no manual intervention. The generated filters can incorporate an Automatic Differentiation technique which combines function evaluation and differentiation in a single process. Using the description of physical system of a range of complexities, we generate extended Kalman filters, which we evaluate in terms of prediction accuracy using simulation traces. The results show that our automatically-generated sensor fusion and state estimation implementations provide state estimation within the same error bound as the human-written hand-optimized counterparts. We additionally quantify the code size and dynamic instruction count requirements of the generated state estimator implementations on the RISC-V architecture. The results show that our synthesized state estimation implementation employing Automatic Differentiation leads to an average improvement in the dynamic instruction count of the generated Kalman filter of 7%-16% compared to the standard differentiation technique. This is improvement comes at the limited cost of an average 4.5% increase in the code size of the generated filters. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2396468059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396468059</sourcerecordid><originalsourceid>FETCH-proquest_journals_23964680593</originalsourceid><addsrcrecordid>eNqNi9EKgjAYhUcQJOU7DLoW1qaml2Fal0Ldy8hfmuRW-7egt29FD9DVxznnOzMScSE2SZFyviAx4sgY4_mWZ5mISLvzzkzSQU_b6wvVBZM9WPUMuTI90ANosNIpo-lgLD2BxoDG46eRuqcnF860Rqemr7Yi80HeEOIfl2Td1OfqmNyteXhA143GWx2mjosyT_OCZaX4z3oDTeM-4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396468059</pqid></control><display><type>article</type><title>Automated Physics-Derived Code Generation for Sensor Fusion and State Estimation</title><source>Publicly Available Content (ProQuest)</source><creator>Kaparounakis, Orestis ; Tsoutsouras, Vasileios ; Soudris, Dimitrios ; Stanley-Marbell, Phillip</creator><creatorcontrib>Kaparounakis, Orestis ; Tsoutsouras, Vasileios ; Soudris, Dimitrios ; Stanley-Marbell, Phillip</creatorcontrib><description>We present a new method for automatically generating the implementation of state-estimation algorithms from a machine-readable specification of the physics of a sensing system and physics of its signals and signal constraints. We implement the new state-estimator code generation method as a backend for a physics specification language and we apply the backend to generate complete C code implementations of state estimators for both linear systems (Kalman filters) and non-linear systems (extended Kalman filters). The state estimator code generation from physics specification is completely automated and requires no manual intervention. The generated filters can incorporate an Automatic Differentiation technique which combines function evaluation and differentiation in a single process. Using the description of physical system of a range of complexities, we generate extended Kalman filters, which we evaluate in terms of prediction accuracy using simulation traces. The results show that our automatically-generated sensor fusion and state estimation implementations provide state estimation within the same error bound as the human-written hand-optimized counterparts. We additionally quantify the code size and dynamic instruction count requirements of the generated state estimator implementations on the RISC-V architecture. The results show that our synthesized state estimation implementation employing Automatic Differentiation leads to an average improvement in the dynamic instruction count of the generated Kalman filter of 7%-16% compared to the standard differentiation technique. This is improvement comes at the limited cost of an average 4.5% increase in the code size of the generated filters.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Automation ; Computer simulation ; Differentiation ; Extended Kalman filter ; Kalman filters ; Linear systems ; Nonlinear systems ; Physics ; Specification and description languages ; Specifications ; State estimation</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2396468059?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Kaparounakis, Orestis</creatorcontrib><creatorcontrib>Tsoutsouras, Vasileios</creatorcontrib><creatorcontrib>Soudris, Dimitrios</creatorcontrib><creatorcontrib>Stanley-Marbell, Phillip</creatorcontrib><title>Automated Physics-Derived Code Generation for Sensor Fusion and State Estimation</title><title>arXiv.org</title><description>We present a new method for automatically generating the implementation of state-estimation algorithms from a machine-readable specification of the physics of a sensing system and physics of its signals and signal constraints. We implement the new state-estimator code generation method as a backend for a physics specification language and we apply the backend to generate complete C code implementations of state estimators for both linear systems (Kalman filters) and non-linear systems (extended Kalman filters). The state estimator code generation from physics specification is completely automated and requires no manual intervention. The generated filters can incorporate an Automatic Differentiation technique which combines function evaluation and differentiation in a single process. Using the description of physical system of a range of complexities, we generate extended Kalman filters, which we evaluate in terms of prediction accuracy using simulation traces. The results show that our automatically-generated sensor fusion and state estimation implementations provide state estimation within the same error bound as the human-written hand-optimized counterparts. We additionally quantify the code size and dynamic instruction count requirements of the generated state estimator implementations on the RISC-V architecture. The results show that our synthesized state estimation implementation employing Automatic Differentiation leads to an average improvement in the dynamic instruction count of the generated Kalman filter of 7%-16% compared to the standard differentiation technique. This is improvement comes at the limited cost of an average 4.5% increase in the code size of the generated filters.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Computer simulation</subject><subject>Differentiation</subject><subject>Extended Kalman filter</subject><subject>Kalman filters</subject><subject>Linear systems</subject><subject>Nonlinear systems</subject><subject>Physics</subject><subject>Specification and description languages</subject><subject>Specifications</subject><subject>State estimation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi9EKgjAYhUcQJOU7DLoW1qaml2Fal0Ldy8hfmuRW-7egt29FD9DVxznnOzMScSE2SZFyviAx4sgY4_mWZ5mISLvzzkzSQU_b6wvVBZM9WPUMuTI90ANosNIpo-lgLD2BxoDG46eRuqcnF860Rqemr7Yi80HeEOIfl2Td1OfqmNyteXhA143GWx2mjosyT_OCZaX4z3oDTeM-4Q</recordid><startdate>20200428</startdate><enddate>20200428</enddate><creator>Kaparounakis, Orestis</creator><creator>Tsoutsouras, Vasileios</creator><creator>Soudris, Dimitrios</creator><creator>Stanley-Marbell, Phillip</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200428</creationdate><title>Automated Physics-Derived Code Generation for Sensor Fusion and State Estimation</title><author>Kaparounakis, Orestis ; Tsoutsouras, Vasileios ; Soudris, Dimitrios ; Stanley-Marbell, Phillip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23964680593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Computer simulation</topic><topic>Differentiation</topic><topic>Extended Kalman filter</topic><topic>Kalman filters</topic><topic>Linear systems</topic><topic>Nonlinear systems</topic><topic>Physics</topic><topic>Specification and description languages</topic><topic>Specifications</topic><topic>State estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaparounakis, Orestis</creatorcontrib><creatorcontrib>Tsoutsouras, Vasileios</creatorcontrib><creatorcontrib>Soudris, Dimitrios</creatorcontrib><creatorcontrib>Stanley-Marbell, Phillip</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaparounakis, Orestis</au><au>Tsoutsouras, Vasileios</au><au>Soudris, Dimitrios</au><au>Stanley-Marbell, Phillip</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Automated Physics-Derived Code Generation for Sensor Fusion and State Estimation</atitle><jtitle>arXiv.org</jtitle><date>2020-04-28</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We present a new method for automatically generating the implementation of state-estimation algorithms from a machine-readable specification of the physics of a sensing system and physics of its signals and signal constraints. We implement the new state-estimator code generation method as a backend for a physics specification language and we apply the backend to generate complete C code implementations of state estimators for both linear systems (Kalman filters) and non-linear systems (extended Kalman filters). The state estimator code generation from physics specification is completely automated and requires no manual intervention. The generated filters can incorporate an Automatic Differentiation technique which combines function evaluation and differentiation in a single process. Using the description of physical system of a range of complexities, we generate extended Kalman filters, which we evaluate in terms of prediction accuracy using simulation traces. The results show that our automatically-generated sensor fusion and state estimation implementations provide state estimation within the same error bound as the human-written hand-optimized counterparts. We additionally quantify the code size and dynamic instruction count requirements of the generated state estimator implementations on the RISC-V architecture. The results show that our synthesized state estimation implementation employing Automatic Differentiation leads to an average improvement in the dynamic instruction count of the generated Kalman filter of 7%-16% compared to the standard differentiation technique. This is improvement comes at the limited cost of an average 4.5% increase in the code size of the generated filters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2396468059 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Automation Computer simulation Differentiation Extended Kalman filter Kalman filters Linear systems Nonlinear systems Physics Specification and description languages Specifications State estimation |
title | Automated Physics-Derived Code Generation for Sensor Fusion and State Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Automated%20Physics-Derived%20Code%20Generation%20for%20Sensor%20Fusion%20and%20State%20Estimation&rft.jtitle=arXiv.org&rft.au=Kaparounakis,%20Orestis&rft.date=2020-04-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2396468059%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23964680593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2396468059&rft_id=info:pmid/&rfr_iscdi=true |