Loading…
Novel computing paradigms for parameter estimation in power signal models
The strength of evolutionary computational heuristic paradigms is exploited for parameter estimation of power signal modeling problems by incorporating differential evolution (DE), genetic algorithms (GAs) and pattern search (PS) methodologies. The objective function of power signal harmonics is con...
Saved in:
Published in: | Neural computing & applications 2020-05, Vol.32 (10), p.6253-6282 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The strength of evolutionary computational heuristic paradigms is exploited for parameter estimation of power signal modeling problems by incorporating differential evolution (DE), genetic algorithms (GAs) and pattern search (PS) methodologies. The objective function of power signal harmonics is constructed by utilizing the power of approximation theory in mean squared error sense. The stiff optimization task of signal harmonics is performed with heuristic solvers DE, GAs and PS that provide efficacy, fast convergence rate and avoid getting trapped in local minima. Statistics reveal that DE outperforms its counterparts in terms of accuracy, robustness and complexity measures. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-019-04133-9 |