Loading…

Optimal Placement of TCSC for Congestion Management and Power Loss Reduction Using Multi-Objective Genetic Algorithm

Electricity demand has been growing due to the increase in the world population and higher energy usage per capita as compared to the past. As a result, various methods have been proposed to increase the efficiency of power systems in terms of mitigating congestion and minimizing power losses. Power...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2020-04, Vol.12 (7), p.2813
Main Authors: Nguyen, Thang Trung, Mohammadi, Fazel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electricity demand has been growing due to the increase in the world population and higher energy usage per capita as compared to the past. As a result, various methods have been proposed to increase the efficiency of power systems in terms of mitigating congestion and minimizing power losses. Power grids operating limitations result in congestion that specifies the final capacity of the system, which decreases the conventional power capabilities between coverage areas. Flexible AC Transmission Systems (FACTS) can help to decrease flows in heavily loaded lines and lead to lines loadability improvements and cost reduction. In this paper, total power loss reduction and line congestion improvement are assessed by determining the optimal locations and compensation rates of Thyristor-Controlled Series Compensator (TCSC) devices using the Multi-Objective Genetic Algorithm (MOGA). The results of applying the proposed method on the IEEE 30-bus test system confirmed the efficiency of the proposed procedure. In addition, to check the performance, applicability, and effectiveness of the proposed method, different heuristic algorithms, such as the multi-objective Particle Swarm Optimization (PSO) algorithm, Differential Evolution (DE) algorithm, and Mixed-Integer Non-Linear Program (MINLP) technique, are used for comparison. The obtained results show the accuracy and fast convergence of the proposed method over the other heuristic techniques.
ISSN:2071-1050
2071-1050
DOI:10.3390/su12072813