Loading…
Pressure-Driven Gas Flows in Micro Channels with a Slip Boundary: A Numerical Investigation
In this paper, flow of slightly rarefied compressible nitrogen in microchannels has been investigated numerically for low values of Reynolds and Mach numbers. The 2D governing equations were solved using Finite Element Method with first-order slip boundary conditions (Comsol Multiphysics software)....
Saved in:
Published in: | Fluid dynamics & materials processing 2020, Vol.16 (2), p.147-159 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, flow of slightly rarefied compressible nitrogen in microchannels has been investigated numerically for low values of Reynolds and Mach numbers. The 2D governing equations were solved using Finite Element Method with first-order slip boundary conditions (Comsol Multiphysics software). A validation was performed by comparing with similar configuration from the literature. It was found that our model can accurately predict the pressure driven flow in microchannels. Several interesting findings are reported about the Relative pressure, longitudinal velocity, Mach number, effect of gas rarefaction and flow rate. |
---|---|
ISSN: | 1555-2578 1555-256X 1555-2578 |
DOI: | 10.32604/fdmp.2020.04073 |