Loading…
Material Point Method Calculations with Explicit Cracks
A new algorithm is described which extends the material point method (MPM) to allow explicit cracks within the model material. Conventional MPM enforces velocity and displacement continuity through its background grid. This approach is incompatible with cracks which are displacement and velocity dis...
Saved in:
Published in: | Computer modeling in engineering & sciences 2003, Vol.4 (6), p.649 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c229t-724854c24f7ae4af13e9fc5b002a698dbbc27c9f085a90c49e2516f1fac5def63 |
---|---|
cites | |
container_end_page | |
container_issue | 6 |
container_start_page | 649 |
container_title | Computer modeling in engineering & sciences |
container_volume | 4 |
creator | Nairn, J A |
description | A new algorithm is described which extends the material point method (MPM) to allow explicit cracks within the model material. Conventional MPM enforces velocity and displacement continuity through its background grid. This approach is incompatible with cracks which are displacement and velocity discontinuities. By allowing multiple velocity fields at special nodes near cracks, the new method (called CRAMP) can model cracks. The results provide an ``exact'' MPM analysis for cracks. Comparison to finite element analysis and to experiments show it gets good results for crack problems. The intersection of crack surfaces is prevented by implementing a crack contact scheme. Crack contact can be modeled using stick or sliding with friction. All results are two dimensional, but the methods can be extended to three dimensional problems. |
doi_str_mv | 10.3970/cmes.2003.004.649 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2397936737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397936737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-724854c24f7ae4af13e9fc5b002a698dbbc27c9f085a90c49e2516f1fac5def63</originalsourceid><addsrcrecordid>eNo1j8tOwzAURC0EEqXwAewssU7w27lLFJWH1AoW7bpybmzVJSQldgSfTyRgNbM4mqMh5JazUoJl9_jhUykYkyVjqjQKzsiCa2EKrpk5_-8KxCW5Suk4g0ZWsCB247Ifo-vo2xD7TDc-H4aW1q7DqXM5Dn2iXzEf6Or71EWMmdajw_d0TS6C65K_-csl2T2utvVzsX59eqkf1gUKAbmwQlVaoVDBOq9c4NJDQN0wJpyBqm0aFBYhsEo7YKjAC81N4MGhbn0wcknufndP4_A5-ZT3x2Ea-1m5F_NxkMZKK38AvHxJKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397936737</pqid></control><display><type>article</type><title>Material Point Method Calculations with Explicit Cracks</title><source>ProQuest Publicly Available Content database</source><creator>Nairn, J A</creator><creatorcontrib>Nairn, J A</creatorcontrib><description>A new algorithm is described which extends the material point method (MPM) to allow explicit cracks within the model material. Conventional MPM enforces velocity and displacement continuity through its background grid. This approach is incompatible with cracks which are displacement and velocity discontinuities. By allowing multiple velocity fields at special nodes near cracks, the new method (called CRAMP) can model cracks. The results provide an ``exact'' MPM analysis for cracks. Comparison to finite element analysis and to experiments show it gets good results for crack problems. The intersection of crack surfaces is prevented by implementing a crack contact scheme. Crack contact can be modeled using stick or sliding with friction. All results are two dimensional, but the methods can be extended to three dimensional problems.</description><identifier>ISSN: 1526-1492</identifier><identifier>EISSN: 1526-1506</identifier><identifier>DOI: 10.3970/cmes.2003.004.649</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Algorithms ; Cracks ; Finite element method ; Mathematical analysis ; Two dimensional models ; Velocity distribution</subject><ispartof>Computer modeling in engineering & sciences, 2003, Vol.4 (6), p.649</ispartof><rights>2003. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c229t-724854c24f7ae4af13e9fc5b002a698dbbc27c9f085a90c49e2516f1fac5def63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2397936737?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Nairn, J A</creatorcontrib><title>Material Point Method Calculations with Explicit Cracks</title><title>Computer modeling in engineering & sciences</title><description>A new algorithm is described which extends the material point method (MPM) to allow explicit cracks within the model material. Conventional MPM enforces velocity and displacement continuity through its background grid. This approach is incompatible with cracks which are displacement and velocity discontinuities. By allowing multiple velocity fields at special nodes near cracks, the new method (called CRAMP) can model cracks. The results provide an ``exact'' MPM analysis for cracks. Comparison to finite element analysis and to experiments show it gets good results for crack problems. The intersection of crack surfaces is prevented by implementing a crack contact scheme. Crack contact can be modeled using stick or sliding with friction. All results are two dimensional, but the methods can be extended to three dimensional problems.</description><subject>Algorithms</subject><subject>Cracks</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Two dimensional models</subject><subject>Velocity distribution</subject><issn>1526-1492</issn><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo1j8tOwzAURC0EEqXwAewssU7w27lLFJWH1AoW7bpybmzVJSQldgSfTyRgNbM4mqMh5JazUoJl9_jhUykYkyVjqjQKzsiCa2EKrpk5_-8KxCW5Suk4g0ZWsCB247Ifo-vo2xD7TDc-H4aW1q7DqXM5Dn2iXzEf6Or71EWMmdajw_d0TS6C65K_-csl2T2utvVzsX59eqkf1gUKAbmwQlVaoVDBOq9c4NJDQN0wJpyBqm0aFBYhsEo7YKjAC81N4MGhbn0wcknufndP4_A5-ZT3x2Ea-1m5F_NxkMZKK38AvHxJKg</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Nairn, J A</creator><general>Tech Science Press</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2003</creationdate><title>Material Point Method Calculations with Explicit Cracks</title><author>Nairn, J A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-724854c24f7ae4af13e9fc5b002a698dbbc27c9f085a90c49e2516f1fac5def63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Cracks</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Two dimensional models</topic><topic>Velocity distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Nairn, J A</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computer modeling in engineering & sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nairn, J A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Material Point Method Calculations with Explicit Cracks</atitle><jtitle>Computer modeling in engineering & sciences</jtitle><date>2003</date><risdate>2003</risdate><volume>4</volume><issue>6</issue><spage>649</spage><pages>649-</pages><issn>1526-1492</issn><eissn>1526-1506</eissn><abstract>A new algorithm is described which extends the material point method (MPM) to allow explicit cracks within the model material. Conventional MPM enforces velocity and displacement continuity through its background grid. This approach is incompatible with cracks which are displacement and velocity discontinuities. By allowing multiple velocity fields at special nodes near cracks, the new method (called CRAMP) can model cracks. The results provide an ``exact'' MPM analysis for cracks. Comparison to finite element analysis and to experiments show it gets good results for crack problems. The intersection of crack surfaces is prevented by implementing a crack contact scheme. Crack contact can be modeled using stick or sliding with friction. All results are two dimensional, but the methods can be extended to three dimensional problems.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.3970/cmes.2003.004.649</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-1492 |
ispartof | Computer modeling in engineering & sciences, 2003, Vol.4 (6), p.649 |
issn | 1526-1492 1526-1506 |
language | eng |
recordid | cdi_proquest_journals_2397936737 |
source | ProQuest Publicly Available Content database |
subjects | Algorithms Cracks Finite element method Mathematical analysis Two dimensional models Velocity distribution |
title | Material Point Method Calculations with Explicit Cracks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Material%20Point%20Method%20Calculations%20with%20Explicit%20Cracks&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Nairn,%20J%20A&rft.date=2003&rft.volume=4&rft.issue=6&rft.spage=649&rft.pages=649-&rft.issn=1526-1492&rft.eissn=1526-1506&rft_id=info:doi/10.3970/cmes.2003.004.649&rft_dat=%3Cproquest%3E2397936737%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c229t-724854c24f7ae4af13e9fc5b002a698dbbc27c9f085a90c49e2516f1fac5def63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2397936737&rft_id=info:pmid/&rfr_iscdi=true |