Loading…
A smart capillary barrier-wick irrigation system for home gardens in arid zones
New water-conserving irrigation technologies are vital in arid countries. We investigated the effects of (i) soil substrates made of Smart Capillary Barrier Wick (SCB-W), consisting of silt loam blocks surrounded by sand-sheathes and irrigated with a sand wick cylinder (WC) as compared to a control...
Saved in:
Published in: | Irrigation science 2020-05, Vol.38 (3), p.235-250 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | New water-conserving irrigation technologies are vital in arid countries. We investigated the effects of (i) soil substrates made of Smart Capillary Barrier Wick (SCB-W), consisting of silt loam blocks surrounded by sand-sheathes and irrigated with a sand wick cylinder (WC) as compared to a control (homogenous soil irrigated by the same wick system, HW), (ii) WC diameters (2.54 cm vs. 1.27 cm), and (iii) 2-cm sand mulch layer on soil–water dynamics during wetting–drying cycles. Field experiments with pots and HYDRUS (2D/3D) modeling were performed in two consecutive phases (with and without sand mulch). Analysis of variance at
p |
---|---|
ISSN: | 0342-7188 1432-1319 |
DOI: | 10.1007/s00271-020-00666-3 |