Loading…
The Hesse potential, the c-map and black hole solutions
A bstract We present a new formulation of the local c -map, which makes use of a symplectically covariant real formulation of special Kähler geometry. We obtain an explicit and simple expression for the resulting quaternionic, or, in the case of reduction over time, para-quaternionic Kähler metric i...
Saved in:
Published in: | The journal of high energy physics 2012-07, Vol.2012 (7), Article 163 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603 |
---|---|
cites | cdi_FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | The journal of high energy physics |
container_volume | 2012 |
creator | Mohaupt, T. Vaughan, O. |
description | A
bstract
We present a new formulation of the local
c
-map, which makes use of a symplectically covariant real formulation of special Kähler geometry. We obtain an explicit and simple expression for the resulting quaternionic, or, in the case of reduction over time, para-quaternionic Kähler metric in terms of the Hesse potential, which is similar to the expressions for the metrics obtained from the rigid
r
- and
c
-map, and from the local
r
-map.
As an application we use the temporal version of the
c
-map to derive the black hole attractor equations from geometric properties of the scalar manifold, without imposing supersymmetry or spherical symmetry. We observe that for general (non-symmetric)
c
-map spaces static BPS solutions are related to a canonical family of totally isotropic, totally geodesic submanifolds. Static non-BPS solutions can be obtained by applying a field rotation matrix which is subject to a non-trivial compatibility condition. We show that for a class of prepotentials, which includes the very special (‘cubic’) prepotentials as a subclass, axion-free solutions always admit a non-trivial field rotation matrix. |
doi_str_mv | 10.1007/JHEP07(2012)163 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2398342328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398342328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603</originalsourceid><addsrcrecordid>eNp1kEFLAzEQRoMoWKtnrwEvCq6dbGI2OUqpVinooZ5Dks7a1u1mTXYP_fduWUEvnmYY3vcNPEIuGdwxgGLyMp-9QXGdA8tvmORHZMQg15kShT7-s5-Ss5S2AOyeaRiRYrlGOseUkDahxbrd2OqWtv3RZzvbUFuvqKus_6TrUCFNoeraTajTOTkpbZXw4meOyfvjbDmdZ4vXp-fpwyLznEGbSQBQhQUnpCu90kJrjuiskJKtrJdWoC2lcE46LJEh8kJJjdrzFVglgY_J1dDbxPDVYWrNNnSx7l-anGvFRc5z1VOTgfIxpBSxNE3c7GzcGwbmYMcMdszBjunt9AkYEqkn6w-Mv73_Rb4BvPhlmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398342328</pqid></control><display><type>article</type><title>The Hesse potential, the c-map and black hole solutions</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Mohaupt, T. ; Vaughan, O.</creator><creatorcontrib>Mohaupt, T. ; Vaughan, O.</creatorcontrib><description>A
bstract
We present a new formulation of the local
c
-map, which makes use of a symplectically covariant real formulation of special Kähler geometry. We obtain an explicit and simple expression for the resulting quaternionic, or, in the case of reduction over time, para-quaternionic Kähler metric in terms of the Hesse potential, which is similar to the expressions for the metrics obtained from the rigid
r
- and
c
-map, and from the local
r
-map.
As an application we use the temporal version of the
c
-map to derive the black hole attractor equations from geometric properties of the scalar manifold, without imposing supersymmetry or spherical symmetry. We observe that for general (non-symmetric)
c
-map spaces static BPS solutions are related to a canonical family of totally isotropic, totally geodesic submanifolds. Static non-BPS solutions can be obtained by applying a field rotation matrix which is subject to a non-trivial compatibility condition. We show that for a class of prepotentials, which includes the very special (‘cubic’) prepotentials as a subclass, axion-free solutions always admit a non-trivial field rotation matrix.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP07(2012)163</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Black holes ; Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Manifolds (mathematics) ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Rotation ; String Theory ; Supersymmetry ; Symmetry</subject><ispartof>The journal of high energy physics, 2012-07, Vol.2012 (7), Article 163</ispartof><rights>SISSA, Trieste, Italy 2012</rights><rights>SISSA, Trieste, Italy 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603</citedby><cites>FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2398342328/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2398342328?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Mohaupt, T.</creatorcontrib><creatorcontrib>Vaughan, O.</creatorcontrib><title>The Hesse potential, the c-map and black hole solutions</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
We present a new formulation of the local
c
-map, which makes use of a symplectically covariant real formulation of special Kähler geometry. We obtain an explicit and simple expression for the resulting quaternionic, or, in the case of reduction over time, para-quaternionic Kähler metric in terms of the Hesse potential, which is similar to the expressions for the metrics obtained from the rigid
r
- and
c
-map, and from the local
r
-map.
As an application we use the temporal version of the
c
-map to derive the black hole attractor equations from geometric properties of the scalar manifold, without imposing supersymmetry or spherical symmetry. We observe that for general (non-symmetric)
c
-map spaces static BPS solutions are related to a canonical family of totally isotropic, totally geodesic submanifolds. Static non-BPS solutions can be obtained by applying a field rotation matrix which is subject to a non-trivial compatibility condition. We show that for a class of prepotentials, which includes the very special (‘cubic’) prepotentials as a subclass, axion-free solutions always admit a non-trivial field rotation matrix.</description><subject>Black holes</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Manifolds (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Rotation</subject><subject>String Theory</subject><subject>Supersymmetry</subject><subject>Symmetry</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kEFLAzEQRoMoWKtnrwEvCq6dbGI2OUqpVinooZ5Dks7a1u1mTXYP_fduWUEvnmYY3vcNPEIuGdwxgGLyMp-9QXGdA8tvmORHZMQg15kShT7-s5-Ss5S2AOyeaRiRYrlGOseUkDahxbrd2OqWtv3RZzvbUFuvqKus_6TrUCFNoeraTajTOTkpbZXw4meOyfvjbDmdZ4vXp-fpwyLznEGbSQBQhQUnpCu90kJrjuiskJKtrJdWoC2lcE46LJEh8kJJjdrzFVglgY_J1dDbxPDVYWrNNnSx7l-anGvFRc5z1VOTgfIxpBSxNE3c7GzcGwbmYMcMdszBjunt9AkYEqkn6w-Mv73_Rb4BvPhlmw</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Mohaupt, T.</creator><creator>Vaughan, O.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20120701</creationdate><title>The Hesse potential, the c-map and black hole solutions</title><author>Mohaupt, T. ; Vaughan, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Black holes</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Manifolds (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Rotation</topic><topic>String Theory</topic><topic>Supersymmetry</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohaupt, T.</creatorcontrib><creatorcontrib>Vaughan, O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohaupt, T.</au><au>Vaughan, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hesse potential, the c-map and black hole solutions</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>2012</volume><issue>7</issue><artnum>163</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
We present a new formulation of the local
c
-map, which makes use of a symplectically covariant real formulation of special Kähler geometry. We obtain an explicit and simple expression for the resulting quaternionic, or, in the case of reduction over time, para-quaternionic Kähler metric in terms of the Hesse potential, which is similar to the expressions for the metrics obtained from the rigid
r
- and
c
-map, and from the local
r
-map.
As an application we use the temporal version of the
c
-map to derive the black hole attractor equations from geometric properties of the scalar manifold, without imposing supersymmetry or spherical symmetry. We observe that for general (non-symmetric)
c
-map spaces static BPS solutions are related to a canonical family of totally isotropic, totally geodesic submanifolds. Static non-BPS solutions can be obtained by applying a field rotation matrix which is subject to a non-trivial compatibility condition. We show that for a class of prepotentials, which includes the very special (‘cubic’) prepotentials as a subclass, axion-free solutions always admit a non-trivial field rotation matrix.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP07(2012)163</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2012-07, Vol.2012 (7), Article 163 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_journals_2398342328 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Black holes Classical and Quantum Gravitation Elementary Particles High energy physics Manifolds (mathematics) Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory Rotation String Theory Supersymmetry Symmetry |
title | The Hesse potential, the c-map and black hole solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hesse%20potential,%20the%20c-map%20and%20black%20hole%20solutions&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Mohaupt,%20T.&rft.date=2012-07-01&rft.volume=2012&rft.issue=7&rft.artnum=163&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP07(2012)163&rft_dat=%3Cproquest_cross%3E2398342328%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2398342328&rft_id=info:pmid/&rfr_iscdi=true |