Loading…

The Hesse potential, the c-map and black hole solutions

A bstract We present a new formulation of the local c -map, which makes use of a symplectically covariant real formulation of special Kähler geometry. We obtain an explicit and simple expression for the resulting quaternionic, or, in the case of reduction over time, para-quaternionic Kähler metric i...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2012-07, Vol.2012 (7), Article 163
Main Authors: Mohaupt, T., Vaughan, O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603
cites cdi_FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603
container_end_page
container_issue 7
container_start_page
container_title The journal of high energy physics
container_volume 2012
creator Mohaupt, T.
Vaughan, O.
description A bstract We present a new formulation of the local c -map, which makes use of a symplectically covariant real formulation of special Kähler geometry. We obtain an explicit and simple expression for the resulting quaternionic, or, in the case of reduction over time, para-quaternionic Kähler metric in terms of the Hesse potential, which is similar to the expressions for the metrics obtained from the rigid r - and c -map, and from the local r -map. As an application we use the temporal version of the c -map to derive the black hole attractor equations from geometric properties of the scalar manifold, without imposing supersymmetry or spherical symmetry. We observe that for general (non-symmetric) c -map spaces static BPS solutions are related to a canonical family of totally isotropic, totally geodesic submanifolds. Static non-BPS solutions can be obtained by applying a field rotation matrix which is subject to a non-trivial compatibility condition. We show that for a class of prepotentials, which includes the very special (‘cubic’) prepotentials as a subclass, axion-free solutions always admit a non-trivial field rotation matrix.
doi_str_mv 10.1007/JHEP07(2012)163
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2398342328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398342328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603</originalsourceid><addsrcrecordid>eNp1kEFLAzEQRoMoWKtnrwEvCq6dbGI2OUqpVinooZ5Dks7a1u1mTXYP_fduWUEvnmYY3vcNPEIuGdwxgGLyMp-9QXGdA8tvmORHZMQg15kShT7-s5-Ss5S2AOyeaRiRYrlGOseUkDahxbrd2OqWtv3RZzvbUFuvqKus_6TrUCFNoeraTajTOTkpbZXw4meOyfvjbDmdZ4vXp-fpwyLznEGbSQBQhQUnpCu90kJrjuiskJKtrJdWoC2lcE46LJEh8kJJjdrzFVglgY_J1dDbxPDVYWrNNnSx7l-anGvFRc5z1VOTgfIxpBSxNE3c7GzcGwbmYMcMdszBjunt9AkYEqkn6w-Mv73_Rb4BvPhlmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398342328</pqid></control><display><type>article</type><title>The Hesse potential, the c-map and black hole solutions</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Mohaupt, T. ; Vaughan, O.</creator><creatorcontrib>Mohaupt, T. ; Vaughan, O.</creatorcontrib><description>A bstract We present a new formulation of the local c -map, which makes use of a symplectically covariant real formulation of special Kähler geometry. We obtain an explicit and simple expression for the resulting quaternionic, or, in the case of reduction over time, para-quaternionic Kähler metric in terms of the Hesse potential, which is similar to the expressions for the metrics obtained from the rigid r - and c -map, and from the local r -map. As an application we use the temporal version of the c -map to derive the black hole attractor equations from geometric properties of the scalar manifold, without imposing supersymmetry or spherical symmetry. We observe that for general (non-symmetric) c -map spaces static BPS solutions are related to a canonical family of totally isotropic, totally geodesic submanifolds. Static non-BPS solutions can be obtained by applying a field rotation matrix which is subject to a non-trivial compatibility condition. We show that for a class of prepotentials, which includes the very special (‘cubic’) prepotentials as a subclass, axion-free solutions always admit a non-trivial field rotation matrix.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP07(2012)163</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Black holes ; Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Manifolds (mathematics) ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Rotation ; String Theory ; Supersymmetry ; Symmetry</subject><ispartof>The journal of high energy physics, 2012-07, Vol.2012 (7), Article 163</ispartof><rights>SISSA, Trieste, Italy 2012</rights><rights>SISSA, Trieste, Italy 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603</citedby><cites>FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2398342328/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2398342328?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Mohaupt, T.</creatorcontrib><creatorcontrib>Vaughan, O.</creatorcontrib><title>The Hesse potential, the c-map and black hole solutions</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We present a new formulation of the local c -map, which makes use of a symplectically covariant real formulation of special Kähler geometry. We obtain an explicit and simple expression for the resulting quaternionic, or, in the case of reduction over time, para-quaternionic Kähler metric in terms of the Hesse potential, which is similar to the expressions for the metrics obtained from the rigid r - and c -map, and from the local r -map. As an application we use the temporal version of the c -map to derive the black hole attractor equations from geometric properties of the scalar manifold, without imposing supersymmetry or spherical symmetry. We observe that for general (non-symmetric) c -map spaces static BPS solutions are related to a canonical family of totally isotropic, totally geodesic submanifolds. Static non-BPS solutions can be obtained by applying a field rotation matrix which is subject to a non-trivial compatibility condition. We show that for a class of prepotentials, which includes the very special (‘cubic’) prepotentials as a subclass, axion-free solutions always admit a non-trivial field rotation matrix.</description><subject>Black holes</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Manifolds (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Rotation</subject><subject>String Theory</subject><subject>Supersymmetry</subject><subject>Symmetry</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kEFLAzEQRoMoWKtnrwEvCq6dbGI2OUqpVinooZ5Dks7a1u1mTXYP_fduWUEvnmYY3vcNPEIuGdwxgGLyMp-9QXGdA8tvmORHZMQg15kShT7-s5-Ss5S2AOyeaRiRYrlGOseUkDahxbrd2OqWtv3RZzvbUFuvqKus_6TrUCFNoeraTajTOTkpbZXw4meOyfvjbDmdZ4vXp-fpwyLznEGbSQBQhQUnpCu90kJrjuiskJKtrJdWoC2lcE46LJEh8kJJjdrzFVglgY_J1dDbxPDVYWrNNnSx7l-anGvFRc5z1VOTgfIxpBSxNE3c7GzcGwbmYMcMdszBjunt9AkYEqkn6w-Mv73_Rb4BvPhlmw</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Mohaupt, T.</creator><creator>Vaughan, O.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20120701</creationdate><title>The Hesse potential, the c-map and black hole solutions</title><author>Mohaupt, T. ; Vaughan, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Black holes</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Manifolds (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Rotation</topic><topic>String Theory</topic><topic>Supersymmetry</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohaupt, T.</creatorcontrib><creatorcontrib>Vaughan, O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohaupt, T.</au><au>Vaughan, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hesse potential, the c-map and black hole solutions</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>2012</volume><issue>7</issue><artnum>163</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We present a new formulation of the local c -map, which makes use of a symplectically covariant real formulation of special Kähler geometry. We obtain an explicit and simple expression for the resulting quaternionic, or, in the case of reduction over time, para-quaternionic Kähler metric in terms of the Hesse potential, which is similar to the expressions for the metrics obtained from the rigid r - and c -map, and from the local r -map. As an application we use the temporal version of the c -map to derive the black hole attractor equations from geometric properties of the scalar manifold, without imposing supersymmetry or spherical symmetry. We observe that for general (non-symmetric) c -map spaces static BPS solutions are related to a canonical family of totally isotropic, totally geodesic submanifolds. Static non-BPS solutions can be obtained by applying a field rotation matrix which is subject to a non-trivial compatibility condition. We show that for a class of prepotentials, which includes the very special (‘cubic’) prepotentials as a subclass, axion-free solutions always admit a non-trivial field rotation matrix.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP07(2012)163</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2012-07, Vol.2012 (7), Article 163
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_2398342328
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Black holes
Classical and Quantum Gravitation
Elementary Particles
High energy physics
Manifolds (mathematics)
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
Rotation
String Theory
Supersymmetry
Symmetry
title The Hesse potential, the c-map and black hole solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hesse%20potential,%20the%20c-map%20and%20black%20hole%20solutions&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Mohaupt,%20T.&rft.date=2012-07-01&rft.volume=2012&rft.issue=7&rft.artnum=163&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP07(2012)163&rft_dat=%3Cproquest_cross%3E2398342328%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-600087a0b46bfc894993eeba4661dac6a4eaf64bb6befe1ee37869e9c3d0a8603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2398342328&rft_id=info:pmid/&rfr_iscdi=true