Loading…
Black Hole Dynamics in Power-law based Metric \(f(R)\) Gravity
In this work, we use power-law cosmology to investigate the evolution of black holes within the context of metric \(f(R)\) gravity satisfying the conditions provided by Starobinsky model. In our study, it is observed that presently accelerated expansion of the universe can be suitably explained by t...
Saved in:
Published in: | arXiv.org 2020-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pati, Suraj Kumar Nayak, Bibekananda Lambodar Prasad Singh |
description | In this work, we use power-law cosmology to investigate the evolution of black holes within the context of metric \(f(R)\) gravity satisfying the conditions provided by Starobinsky model. In our study, it is observed that presently accelerated expansion of the universe can be suitably explained by this integrated model without the need for dark energy. We also found that mass of a black hole decreases by absorbing surroundings energy-matter due to modification of gravity and more the accretion rate more is mass loss. Particularly the black holes, whose formation masses are nearly \(10^{20}\) gm and above, are evaporated at a particular time irrespective of their formation mass. Again our analysis reveals that the maximum mass of a black hole supported by metric \(f(R)\) gravity is \(10^{12} M_{\odot}\), where \(M_{\odot}\) represents the solar mass. |
doi_str_mv | 10.48550/arxiv.2005.01364 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2398387498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398387498</sourcerecordid><originalsourceid>FETCH-proquest_journals_23983874983</originalsourceid><addsrcrecordid>eNqNirsOgjAAABsTE4nyAW5NXGAASx-Ai4NPFhNjHElIxZIUEbTlIX8vgx_gcjfcATD3kEtDxtCSq49sXYwQc5FHfDoCBibEc0KK8QSYWucIIewHmDFigPWm4OkDRlUh4K4v-VOmGsoSnqtOKKfgHbxxLe7wJGolUxhbmXWxYxseFW9l3c_AOOOFFubPU7A47K_byHmp6t0IXSd51ahySAkmq5CEAR343_UFnpU8sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398387498</pqid></control><display><type>article</type><title>Black Hole Dynamics in Power-law based Metric \(f(R)\) Gravity</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Pati, Suraj Kumar ; Nayak, Bibekananda ; Lambodar Prasad Singh</creator><creatorcontrib>Pati, Suraj Kumar ; Nayak, Bibekananda ; Lambodar Prasad Singh</creatorcontrib><description>In this work, we use power-law cosmology to investigate the evolution of black holes within the context of metric \(f(R)\) gravity satisfying the conditions provided by Starobinsky model. In our study, it is observed that presently accelerated expansion of the universe can be suitably explained by this integrated model without the need for dark energy. We also found that mass of a black hole decreases by absorbing surroundings energy-matter due to modification of gravity and more the accretion rate more is mass loss. Particularly the black holes, whose formation masses are nearly \(10^{20}\) gm and above, are evaporated at a particular time irrespective of their formation mass. Again our analysis reveals that the maximum mass of a black hole supported by metric \(f(R)\) gravity is \(10^{12} M_{\odot}\), where \(M_{\odot}\) represents the solar mass.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2005.01364</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cosmology ; Dark energy ; Deposition ; Gravitation ; Power law</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2398387498?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Pati, Suraj Kumar</creatorcontrib><creatorcontrib>Nayak, Bibekananda</creatorcontrib><creatorcontrib>Lambodar Prasad Singh</creatorcontrib><title>Black Hole Dynamics in Power-law based Metric \(f(R)\) Gravity</title><title>arXiv.org</title><description>In this work, we use power-law cosmology to investigate the evolution of black holes within the context of metric \(f(R)\) gravity satisfying the conditions provided by Starobinsky model. In our study, it is observed that presently accelerated expansion of the universe can be suitably explained by this integrated model without the need for dark energy. We also found that mass of a black hole decreases by absorbing surroundings energy-matter due to modification of gravity and more the accretion rate more is mass loss. Particularly the black holes, whose formation masses are nearly \(10^{20}\) gm and above, are evaporated at a particular time irrespective of their formation mass. Again our analysis reveals that the maximum mass of a black hole supported by metric \(f(R)\) gravity is \(10^{12} M_{\odot}\), where \(M_{\odot}\) represents the solar mass.</description><subject>Cosmology</subject><subject>Dark energy</subject><subject>Deposition</subject><subject>Gravitation</subject><subject>Power law</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirsOgjAAABsTE4nyAW5NXGAASx-Ai4NPFhNjHElIxZIUEbTlIX8vgx_gcjfcATD3kEtDxtCSq49sXYwQc5FHfDoCBibEc0KK8QSYWucIIewHmDFigPWm4OkDRlUh4K4v-VOmGsoSnqtOKKfgHbxxLe7wJGolUxhbmXWxYxseFW9l3c_AOOOFFubPU7A47K_byHmp6t0IXSd51ahySAkmq5CEAR343_UFnpU8sg</recordid><startdate>20201011</startdate><enddate>20201011</enddate><creator>Pati, Suraj Kumar</creator><creator>Nayak, Bibekananda</creator><creator>Lambodar Prasad Singh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201011</creationdate><title>Black Hole Dynamics in Power-law based Metric \(f(R)\) Gravity</title><author>Pati, Suraj Kumar ; Nayak, Bibekananda ; Lambodar Prasad Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23983874983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cosmology</topic><topic>Dark energy</topic><topic>Deposition</topic><topic>Gravitation</topic><topic>Power law</topic><toplevel>online_resources</toplevel><creatorcontrib>Pati, Suraj Kumar</creatorcontrib><creatorcontrib>Nayak, Bibekananda</creatorcontrib><creatorcontrib>Lambodar Prasad Singh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pati, Suraj Kumar</au><au>Nayak, Bibekananda</au><au>Lambodar Prasad Singh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Black Hole Dynamics in Power-law based Metric \(f(R)\) Gravity</atitle><jtitle>arXiv.org</jtitle><date>2020-10-11</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this work, we use power-law cosmology to investigate the evolution of black holes within the context of metric \(f(R)\) gravity satisfying the conditions provided by Starobinsky model. In our study, it is observed that presently accelerated expansion of the universe can be suitably explained by this integrated model without the need for dark energy. We also found that mass of a black hole decreases by absorbing surroundings energy-matter due to modification of gravity and more the accretion rate more is mass loss. Particularly the black holes, whose formation masses are nearly \(10^{20}\) gm and above, are evaporated at a particular time irrespective of their formation mass. Again our analysis reveals that the maximum mass of a black hole supported by metric \(f(R)\) gravity is \(10^{12} M_{\odot}\), where \(M_{\odot}\) represents the solar mass.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2005.01364</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2398387498 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Cosmology Dark energy Deposition Gravitation Power law |
title | Black Hole Dynamics in Power-law based Metric \(f(R)\) Gravity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Black%20Hole%20Dynamics%20in%20Power-law%20based%20Metric%20%5C(f(R)%5C)%20Gravity&rft.jtitle=arXiv.org&rft.au=Pati,%20Suraj%20Kumar&rft.date=2020-10-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2005.01364&rft_dat=%3Cproquest%3E2398387498%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23983874983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2398387498&rft_id=info:pmid/&rfr_iscdi=true |