Loading…

Black Hole Dynamics in Power-law based Metric \(f(R)\) Gravity

In this work, we use power-law cosmology to investigate the evolution of black holes within the context of metric \(f(R)\) gravity satisfying the conditions provided by Starobinsky model. In our study, it is observed that presently accelerated expansion of the universe can be suitably explained by t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-10
Main Authors: Pati, Suraj Kumar, Nayak, Bibekananda, Lambodar Prasad Singh
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pati, Suraj Kumar
Nayak, Bibekananda
Lambodar Prasad Singh
description In this work, we use power-law cosmology to investigate the evolution of black holes within the context of metric \(f(R)\) gravity satisfying the conditions provided by Starobinsky model. In our study, it is observed that presently accelerated expansion of the universe can be suitably explained by this integrated model without the need for dark energy. We also found that mass of a black hole decreases by absorbing surroundings energy-matter due to modification of gravity and more the accretion rate more is mass loss. Particularly the black holes, whose formation masses are nearly \(10^{20}\) gm and above, are evaporated at a particular time irrespective of their formation mass. Again our analysis reveals that the maximum mass of a black hole supported by metric \(f(R)\) gravity is \(10^{12} M_{\odot}\), where \(M_{\odot}\) represents the solar mass.
doi_str_mv 10.48550/arxiv.2005.01364
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2398387498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398387498</sourcerecordid><originalsourceid>FETCH-proquest_journals_23983874983</originalsourceid><addsrcrecordid>eNqNirsOgjAAABsTE4nyAW5NXGAASx-Ai4NPFhNjHElIxZIUEbTlIX8vgx_gcjfcATD3kEtDxtCSq49sXYwQc5FHfDoCBibEc0KK8QSYWucIIewHmDFigPWm4OkDRlUh4K4v-VOmGsoSnqtOKKfgHbxxLe7wJGolUxhbmXWxYxseFW9l3c_AOOOFFubPU7A47K_byHmp6t0IXSd51ahySAkmq5CEAR343_UFnpU8sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398387498</pqid></control><display><type>article</type><title>Black Hole Dynamics in Power-law based Metric \(f(R)\) Gravity</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Pati, Suraj Kumar ; Nayak, Bibekananda ; Lambodar Prasad Singh</creator><creatorcontrib>Pati, Suraj Kumar ; Nayak, Bibekananda ; Lambodar Prasad Singh</creatorcontrib><description>In this work, we use power-law cosmology to investigate the evolution of black holes within the context of metric \(f(R)\) gravity satisfying the conditions provided by Starobinsky model. In our study, it is observed that presently accelerated expansion of the universe can be suitably explained by this integrated model without the need for dark energy. We also found that mass of a black hole decreases by absorbing surroundings energy-matter due to modification of gravity and more the accretion rate more is mass loss. Particularly the black holes, whose formation masses are nearly \(10^{20}\) gm and above, are evaporated at a particular time irrespective of their formation mass. Again our analysis reveals that the maximum mass of a black hole supported by metric \(f(R)\) gravity is \(10^{12} M_{\odot}\), where \(M_{\odot}\) represents the solar mass.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2005.01364</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cosmology ; Dark energy ; Deposition ; Gravitation ; Power law</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2398387498?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Pati, Suraj Kumar</creatorcontrib><creatorcontrib>Nayak, Bibekananda</creatorcontrib><creatorcontrib>Lambodar Prasad Singh</creatorcontrib><title>Black Hole Dynamics in Power-law based Metric \(f(R)\) Gravity</title><title>arXiv.org</title><description>In this work, we use power-law cosmology to investigate the evolution of black holes within the context of metric \(f(R)\) gravity satisfying the conditions provided by Starobinsky model. In our study, it is observed that presently accelerated expansion of the universe can be suitably explained by this integrated model without the need for dark energy. We also found that mass of a black hole decreases by absorbing surroundings energy-matter due to modification of gravity and more the accretion rate more is mass loss. Particularly the black holes, whose formation masses are nearly \(10^{20}\) gm and above, are evaporated at a particular time irrespective of their formation mass. Again our analysis reveals that the maximum mass of a black hole supported by metric \(f(R)\) gravity is \(10^{12} M_{\odot}\), where \(M_{\odot}\) represents the solar mass.</description><subject>Cosmology</subject><subject>Dark energy</subject><subject>Deposition</subject><subject>Gravitation</subject><subject>Power law</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirsOgjAAABsTE4nyAW5NXGAASx-Ai4NPFhNjHElIxZIUEbTlIX8vgx_gcjfcATD3kEtDxtCSq49sXYwQc5FHfDoCBibEc0KK8QSYWucIIewHmDFigPWm4OkDRlUh4K4v-VOmGsoSnqtOKKfgHbxxLe7wJGolUxhbmXWxYxseFW9l3c_AOOOFFubPU7A47K_byHmp6t0IXSd51ahySAkmq5CEAR343_UFnpU8sg</recordid><startdate>20201011</startdate><enddate>20201011</enddate><creator>Pati, Suraj Kumar</creator><creator>Nayak, Bibekananda</creator><creator>Lambodar Prasad Singh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201011</creationdate><title>Black Hole Dynamics in Power-law based Metric \(f(R)\) Gravity</title><author>Pati, Suraj Kumar ; Nayak, Bibekananda ; Lambodar Prasad Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23983874983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cosmology</topic><topic>Dark energy</topic><topic>Deposition</topic><topic>Gravitation</topic><topic>Power law</topic><toplevel>online_resources</toplevel><creatorcontrib>Pati, Suraj Kumar</creatorcontrib><creatorcontrib>Nayak, Bibekananda</creatorcontrib><creatorcontrib>Lambodar Prasad Singh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pati, Suraj Kumar</au><au>Nayak, Bibekananda</au><au>Lambodar Prasad Singh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Black Hole Dynamics in Power-law based Metric \(f(R)\) Gravity</atitle><jtitle>arXiv.org</jtitle><date>2020-10-11</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this work, we use power-law cosmology to investigate the evolution of black holes within the context of metric \(f(R)\) gravity satisfying the conditions provided by Starobinsky model. In our study, it is observed that presently accelerated expansion of the universe can be suitably explained by this integrated model without the need for dark energy. We also found that mass of a black hole decreases by absorbing surroundings energy-matter due to modification of gravity and more the accretion rate more is mass loss. Particularly the black holes, whose formation masses are nearly \(10^{20}\) gm and above, are evaporated at a particular time irrespective of their formation mass. Again our analysis reveals that the maximum mass of a black hole supported by metric \(f(R)\) gravity is \(10^{12} M_{\odot}\), where \(M_{\odot}\) represents the solar mass.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2005.01364</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2398387498
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Cosmology
Dark energy
Deposition
Gravitation
Power law
title Black Hole Dynamics in Power-law based Metric \(f(R)\) Gravity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Black%20Hole%20Dynamics%20in%20Power-law%20based%20Metric%20%5C(f(R)%5C)%20Gravity&rft.jtitle=arXiv.org&rft.au=Pati,%20Suraj%20Kumar&rft.date=2020-10-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2005.01364&rft_dat=%3Cproquest%3E2398387498%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23983874983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2398387498&rft_id=info:pmid/&rfr_iscdi=true