Loading…

The structure theory of nilspaces I

This paper forms the first part of a series by the authors [GMV16a, GMV16b] concerning the structure theory of nilspaces of Antolín Camarena and Szegedy. A nilspace is a compact space X together with closed collections of cubes C n ( X ) ⊑ X 2n , n = 1, 2,... satisfying some natural axioms. Antolín...

Full description

Saved in:
Bibliographic Details
Published in:Journal d'analyse mathématique (Jerusalem) 2020-03, Vol.140 (1), p.299-369
Main Authors: Gutman, Yonatan, Manners, Freddie, Varjú, Péter P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33
cites cdi_FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33
container_end_page 369
container_issue 1
container_start_page 299
container_title Journal d'analyse mathématique (Jerusalem)
container_volume 140
creator Gutman, Yonatan
Manners, Freddie
Varjú, Péter P.
description This paper forms the first part of a series by the authors [GMV16a, GMV16b] concerning the structure theory of nilspaces of Antolín Camarena and Szegedy. A nilspace is a compact space X together with closed collections of cubes C n ( X ) ⊑ X 2n , n = 1, 2,... satisfying some natural axioms. Antolín Camarena and Szegedy proved that from these axioms it follows that (certain) nilspaces are isomorphic (in a strong sense) to an inverse limit of nilmanifolds. The aim of our project is to provide a new self-contained treatment of this theory and give new applications to topological dynamics. This paper provides an introduction to the project from the point of view of applications to higher order Fourier analysis. We define and explain the basic definitions and constructions related to cubespaces and nilspaces and develop the weak structure theory, which is the first stage of the proof of the main structure theorem for nilspaces. Vaguely speaking, this asserts that a nilspace can be built as a finite tower of extensions where each of the successive fibers is a compact abelian group. We also make some modest innovations and extensions to this theory. In particular, we consider a class ofmaps thatwe term fibrations, which are essentially equivalent to what are termed fiber-surjective morphisms by Anatolín Camarena and Szegedy; andwe formulate and prove a relative analogue of the weak structure theory alluded to above for these maps. These results find applications elsewhere in the project.
doi_str_mv 10.1007/s11854-020-0093-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2398856920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398856920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EEqXwA9gidTac7dixR1QBrVSJJbvl2GfaqiTBTob-e1IFiYnplve-kx4hjwyeGED1nBnTsqTAgQIYQfUVWTCpJNVS6GuyAOCMVqqCW3KX8xFASiP4gqzqPRZ5SKMfxoTFsMcunYsuFu3hlHvnMRfbe3IT3Snjw-9dkvrttV5v6O7jfbt-2VEvpBlo6RyPKpYYFAhWGRHQaFTeINOgglaOIfcgReNdxYNSMaBT0LjoXBOEWJLVPNun7nvEPNhjN6Z2-mi5MFpLZThMFJspn7qcE0bbp8OXS2fLwF5S2DmFnVLYSwqrJ4fPTp7Y9hPT3_L_0g_4GmBG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398856920</pqid></control><display><type>article</type><title>The structure theory of nilspaces I</title><source>Springer Nature</source><creator>Gutman, Yonatan ; Manners, Freddie ; Varjú, Péter P.</creator><creatorcontrib>Gutman, Yonatan ; Manners, Freddie ; Varjú, Péter P.</creatorcontrib><description>This paper forms the first part of a series by the authors [GMV16a, GMV16b] concerning the structure theory of nilspaces of Antolín Camarena and Szegedy. A nilspace is a compact space X together with closed collections of cubes C n ( X ) ⊑ X 2n , n = 1, 2,... satisfying some natural axioms. Antolín Camarena and Szegedy proved that from these axioms it follows that (certain) nilspaces are isomorphic (in a strong sense) to an inverse limit of nilmanifolds. The aim of our project is to provide a new self-contained treatment of this theory and give new applications to topological dynamics. This paper provides an introduction to the project from the point of view of applications to higher order Fourier analysis. We define and explain the basic definitions and constructions related to cubespaces and nilspaces and develop the weak structure theory, which is the first stage of the proof of the main structure theorem for nilspaces. Vaguely speaking, this asserts that a nilspace can be built as a finite tower of extensions where each of the successive fibers is a compact abelian group. We also make some modest innovations and extensions to this theory. In particular, we consider a class ofmaps thatwe term fibrations, which are essentially equivalent to what are termed fiber-surjective morphisms by Anatolín Camarena and Szegedy; andwe formulate and prove a relative analogue of the weak structure theory alluded to above for these maps. These results find applications elsewhere in the project.</description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/s11854-020-0093-8</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Abstract Harmonic Analysis ; Analysis ; Axioms ; Cubes ; Dynamical Systems and Ergodic Theory ; Fourier analysis ; Functional Analysis ; Group theory ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2020-03, Vol.140 (1), p.299-369</ispartof><rights>The Hebrew University of Jerusalem 2020</rights><rights>The Hebrew University of Jerusalem 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33</citedby><cites>FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gutman, Yonatan</creatorcontrib><creatorcontrib>Manners, Freddie</creatorcontrib><creatorcontrib>Varjú, Péter P.</creatorcontrib><title>The structure theory of nilspaces I</title><title>Journal d'analyse mathématique (Jerusalem)</title><addtitle>JAMA</addtitle><description>This paper forms the first part of a series by the authors [GMV16a, GMV16b] concerning the structure theory of nilspaces of Antolín Camarena and Szegedy. A nilspace is a compact space X together with closed collections of cubes C n ( X ) ⊑ X 2n , n = 1, 2,... satisfying some natural axioms. Antolín Camarena and Szegedy proved that from these axioms it follows that (certain) nilspaces are isomorphic (in a strong sense) to an inverse limit of nilmanifolds. The aim of our project is to provide a new self-contained treatment of this theory and give new applications to topological dynamics. This paper provides an introduction to the project from the point of view of applications to higher order Fourier analysis. We define and explain the basic definitions and constructions related to cubespaces and nilspaces and develop the weak structure theory, which is the first stage of the proof of the main structure theorem for nilspaces. Vaguely speaking, this asserts that a nilspace can be built as a finite tower of extensions where each of the successive fibers is a compact abelian group. We also make some modest innovations and extensions to this theory. In particular, we consider a class ofmaps thatwe term fibrations, which are essentially equivalent to what are termed fiber-surjective morphisms by Anatolín Camarena and Szegedy; andwe formulate and prove a relative analogue of the weak structure theory alluded to above for these maps. These results find applications elsewhere in the project.</description><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Axioms</subject><subject>Cubes</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier analysis</subject><subject>Functional Analysis</subject><subject>Group theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQRi0EEqXwA9gidTac7dixR1QBrVSJJbvl2GfaqiTBTob-e1IFiYnplve-kx4hjwyeGED1nBnTsqTAgQIYQfUVWTCpJNVS6GuyAOCMVqqCW3KX8xFASiP4gqzqPRZ5SKMfxoTFsMcunYsuFu3hlHvnMRfbe3IT3Snjw-9dkvrttV5v6O7jfbt-2VEvpBlo6RyPKpYYFAhWGRHQaFTeINOgglaOIfcgReNdxYNSMaBT0LjoXBOEWJLVPNun7nvEPNhjN6Z2-mi5MFpLZThMFJspn7qcE0bbp8OXS2fLwF5S2DmFnVLYSwqrJ4fPTp7Y9hPT3_L_0g_4GmBG</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Gutman, Yonatan</creator><creator>Manners, Freddie</creator><creator>Varjú, Péter P.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200301</creationdate><title>The structure theory of nilspaces I</title><author>Gutman, Yonatan ; Manners, Freddie ; Varjú, Péter P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Axioms</topic><topic>Cubes</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier analysis</topic><topic>Functional Analysis</topic><topic>Group theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutman, Yonatan</creatorcontrib><creatorcontrib>Manners, Freddie</creatorcontrib><creatorcontrib>Varjú, Péter P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutman, Yonatan</au><au>Manners, Freddie</au><au>Varjú, Péter P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structure theory of nilspaces I</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><stitle>JAMA</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>140</volume><issue>1</issue><spage>299</spage><epage>369</epage><pages>299-369</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract>This paper forms the first part of a series by the authors [GMV16a, GMV16b] concerning the structure theory of nilspaces of Antolín Camarena and Szegedy. A nilspace is a compact space X together with closed collections of cubes C n ( X ) ⊑ X 2n , n = 1, 2,... satisfying some natural axioms. Antolín Camarena and Szegedy proved that from these axioms it follows that (certain) nilspaces are isomorphic (in a strong sense) to an inverse limit of nilmanifolds. The aim of our project is to provide a new self-contained treatment of this theory and give new applications to topological dynamics. This paper provides an introduction to the project from the point of view of applications to higher order Fourier analysis. We define and explain the basic definitions and constructions related to cubespaces and nilspaces and develop the weak structure theory, which is the first stage of the proof of the main structure theorem for nilspaces. Vaguely speaking, this asserts that a nilspace can be built as a finite tower of extensions where each of the successive fibers is a compact abelian group. We also make some modest innovations and extensions to this theory. In particular, we consider a class ofmaps thatwe term fibrations, which are essentially equivalent to what are termed fiber-surjective morphisms by Anatolín Camarena and Szegedy; andwe formulate and prove a relative analogue of the weak structure theory alluded to above for these maps. These results find applications elsewhere in the project.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11854-020-0093-8</doi><tpages>71</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-7670
ispartof Journal d'analyse mathématique (Jerusalem), 2020-03, Vol.140 (1), p.299-369
issn 0021-7670
1565-8538
language eng
recordid cdi_proquest_journals_2398856920
source Springer Nature
subjects Abstract Harmonic Analysis
Analysis
Axioms
Cubes
Dynamical Systems and Ergodic Theory
Fourier analysis
Functional Analysis
Group theory
Mathematics
Mathematics and Statistics
Partial Differential Equations
title The structure theory of nilspaces I
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structure%20theory%20of%20nilspaces%20I&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Gutman,%20Yonatan&rft.date=2020-03-01&rft.volume=140&rft.issue=1&rft.spage=299&rft.epage=369&rft.pages=299-369&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/s11854-020-0093-8&rft_dat=%3Cproquest_cross%3E2398856920%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2398856920&rft_id=info:pmid/&rfr_iscdi=true