Loading…
The structure theory of nilspaces I
This paper forms the first part of a series by the authors [GMV16a, GMV16b] concerning the structure theory of nilspaces of Antolín Camarena and Szegedy. A nilspace is a compact space X together with closed collections of cubes C n ( X ) ⊑ X 2n , n = 1, 2,... satisfying some natural axioms. Antolín...
Saved in:
Published in: | Journal d'analyse mathématique (Jerusalem) 2020-03, Vol.140 (1), p.299-369 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33 |
container_end_page | 369 |
container_issue | 1 |
container_start_page | 299 |
container_title | Journal d'analyse mathématique (Jerusalem) |
container_volume | 140 |
creator | Gutman, Yonatan Manners, Freddie Varjú, Péter P. |
description | This paper forms the first part of a series by the authors [GMV16a, GMV16b] concerning the structure theory of nilspaces of Antolín Camarena and Szegedy. A nilspace is a compact space X together with closed collections of cubes C
n
(
X
) ⊑
X
2n
,
n
= 1, 2,... satisfying some natural axioms. Antolín Camarena and Szegedy proved that from these axioms it follows that (certain) nilspaces are isomorphic (in a strong sense) to an inverse limit of nilmanifolds. The aim of our project is to provide a new self-contained treatment of this theory and give new applications to topological dynamics.
This paper provides an introduction to the project from the point of view of applications to higher order Fourier analysis. We define and explain the basic definitions and constructions related to cubespaces and nilspaces and develop the weak structure theory, which is the first stage of the proof of the main structure theorem for nilspaces. Vaguely speaking, this asserts that a nilspace can be built as a finite tower of extensions where each of the successive fibers is a compact abelian group.
We also make some modest innovations and extensions to this theory. In particular, we consider a class ofmaps thatwe term fibrations, which are essentially equivalent to what are termed fiber-surjective morphisms by Anatolín Camarena and Szegedy; andwe formulate and prove a relative analogue of the weak structure theory alluded to above for these maps. These results find applications elsewhere in the project. |
doi_str_mv | 10.1007/s11854-020-0093-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2398856920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398856920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EEqXwA9gidTac7dixR1QBrVSJJbvl2GfaqiTBTob-e1IFiYnplve-kx4hjwyeGED1nBnTsqTAgQIYQfUVWTCpJNVS6GuyAOCMVqqCW3KX8xFASiP4gqzqPRZ5SKMfxoTFsMcunYsuFu3hlHvnMRfbe3IT3Snjw-9dkvrttV5v6O7jfbt-2VEvpBlo6RyPKpYYFAhWGRHQaFTeINOgglaOIfcgReNdxYNSMaBT0LjoXBOEWJLVPNun7nvEPNhjN6Z2-mi5MFpLZThMFJspn7qcE0bbp8OXS2fLwF5S2DmFnVLYSwqrJ4fPTp7Y9hPT3_L_0g_4GmBG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398856920</pqid></control><display><type>article</type><title>The structure theory of nilspaces I</title><source>Springer Nature</source><creator>Gutman, Yonatan ; Manners, Freddie ; Varjú, Péter P.</creator><creatorcontrib>Gutman, Yonatan ; Manners, Freddie ; Varjú, Péter P.</creatorcontrib><description>This paper forms the first part of a series by the authors [GMV16a, GMV16b] concerning the structure theory of nilspaces of Antolín Camarena and Szegedy. A nilspace is a compact space X together with closed collections of cubes C
n
(
X
) ⊑
X
2n
,
n
= 1, 2,... satisfying some natural axioms. Antolín Camarena and Szegedy proved that from these axioms it follows that (certain) nilspaces are isomorphic (in a strong sense) to an inverse limit of nilmanifolds. The aim of our project is to provide a new self-contained treatment of this theory and give new applications to topological dynamics.
This paper provides an introduction to the project from the point of view of applications to higher order Fourier analysis. We define and explain the basic definitions and constructions related to cubespaces and nilspaces and develop the weak structure theory, which is the first stage of the proof of the main structure theorem for nilspaces. Vaguely speaking, this asserts that a nilspace can be built as a finite tower of extensions where each of the successive fibers is a compact abelian group.
We also make some modest innovations and extensions to this theory. In particular, we consider a class ofmaps thatwe term fibrations, which are essentially equivalent to what are termed fiber-surjective morphisms by Anatolín Camarena and Szegedy; andwe formulate and prove a relative analogue of the weak structure theory alluded to above for these maps. These results find applications elsewhere in the project.</description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/s11854-020-0093-8</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Abstract Harmonic Analysis ; Analysis ; Axioms ; Cubes ; Dynamical Systems and Ergodic Theory ; Fourier analysis ; Functional Analysis ; Group theory ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2020-03, Vol.140 (1), p.299-369</ispartof><rights>The Hebrew University of Jerusalem 2020</rights><rights>The Hebrew University of Jerusalem 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33</citedby><cites>FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gutman, Yonatan</creatorcontrib><creatorcontrib>Manners, Freddie</creatorcontrib><creatorcontrib>Varjú, Péter P.</creatorcontrib><title>The structure theory of nilspaces I</title><title>Journal d'analyse mathématique (Jerusalem)</title><addtitle>JAMA</addtitle><description>This paper forms the first part of a series by the authors [GMV16a, GMV16b] concerning the structure theory of nilspaces of Antolín Camarena and Szegedy. A nilspace is a compact space X together with closed collections of cubes C
n
(
X
) ⊑
X
2n
,
n
= 1, 2,... satisfying some natural axioms. Antolín Camarena and Szegedy proved that from these axioms it follows that (certain) nilspaces are isomorphic (in a strong sense) to an inverse limit of nilmanifolds. The aim of our project is to provide a new self-contained treatment of this theory and give new applications to topological dynamics.
This paper provides an introduction to the project from the point of view of applications to higher order Fourier analysis. We define and explain the basic definitions and constructions related to cubespaces and nilspaces and develop the weak structure theory, which is the first stage of the proof of the main structure theorem for nilspaces. Vaguely speaking, this asserts that a nilspace can be built as a finite tower of extensions where each of the successive fibers is a compact abelian group.
We also make some modest innovations and extensions to this theory. In particular, we consider a class ofmaps thatwe term fibrations, which are essentially equivalent to what are termed fiber-surjective morphisms by Anatolín Camarena and Szegedy; andwe formulate and prove a relative analogue of the weak structure theory alluded to above for these maps. These results find applications elsewhere in the project.</description><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Axioms</subject><subject>Cubes</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier analysis</subject><subject>Functional Analysis</subject><subject>Group theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQRi0EEqXwA9gidTac7dixR1QBrVSJJbvl2GfaqiTBTob-e1IFiYnplve-kx4hjwyeGED1nBnTsqTAgQIYQfUVWTCpJNVS6GuyAOCMVqqCW3KX8xFASiP4gqzqPRZ5SKMfxoTFsMcunYsuFu3hlHvnMRfbe3IT3Snjw-9dkvrttV5v6O7jfbt-2VEvpBlo6RyPKpYYFAhWGRHQaFTeINOgglaOIfcgReNdxYNSMaBT0LjoXBOEWJLVPNun7nvEPNhjN6Z2-mi5MFpLZThMFJspn7qcE0bbp8OXS2fLwF5S2DmFnVLYSwqrJ4fPTp7Y9hPT3_L_0g_4GmBG</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Gutman, Yonatan</creator><creator>Manners, Freddie</creator><creator>Varjú, Péter P.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200301</creationdate><title>The structure theory of nilspaces I</title><author>Gutman, Yonatan ; Manners, Freddie ; Varjú, Péter P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Axioms</topic><topic>Cubes</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier analysis</topic><topic>Functional Analysis</topic><topic>Group theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutman, Yonatan</creatorcontrib><creatorcontrib>Manners, Freddie</creatorcontrib><creatorcontrib>Varjú, Péter P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutman, Yonatan</au><au>Manners, Freddie</au><au>Varjú, Péter P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structure theory of nilspaces I</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><stitle>JAMA</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>140</volume><issue>1</issue><spage>299</spage><epage>369</epage><pages>299-369</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract>This paper forms the first part of a series by the authors [GMV16a, GMV16b] concerning the structure theory of nilspaces of Antolín Camarena and Szegedy. A nilspace is a compact space X together with closed collections of cubes C
n
(
X
) ⊑
X
2n
,
n
= 1, 2,... satisfying some natural axioms. Antolín Camarena and Szegedy proved that from these axioms it follows that (certain) nilspaces are isomorphic (in a strong sense) to an inverse limit of nilmanifolds. The aim of our project is to provide a new self-contained treatment of this theory and give new applications to topological dynamics.
This paper provides an introduction to the project from the point of view of applications to higher order Fourier analysis. We define and explain the basic definitions and constructions related to cubespaces and nilspaces and develop the weak structure theory, which is the first stage of the proof of the main structure theorem for nilspaces. Vaguely speaking, this asserts that a nilspace can be built as a finite tower of extensions where each of the successive fibers is a compact abelian group.
We also make some modest innovations and extensions to this theory. In particular, we consider a class ofmaps thatwe term fibrations, which are essentially equivalent to what are termed fiber-surjective morphisms by Anatolín Camarena and Szegedy; andwe formulate and prove a relative analogue of the weak structure theory alluded to above for these maps. These results find applications elsewhere in the project.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11854-020-0093-8</doi><tpages>71</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-7670 |
ispartof | Journal d'analyse mathématique (Jerusalem), 2020-03, Vol.140 (1), p.299-369 |
issn | 0021-7670 1565-8538 |
language | eng |
recordid | cdi_proquest_journals_2398856920 |
source | Springer Nature |
subjects | Abstract Harmonic Analysis Analysis Axioms Cubes Dynamical Systems and Ergodic Theory Fourier analysis Functional Analysis Group theory Mathematics Mathematics and Statistics Partial Differential Equations |
title | The structure theory of nilspaces I |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structure%20theory%20of%20nilspaces%20I&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Gutman,%20Yonatan&rft.date=2020-03-01&rft.volume=140&rft.issue=1&rft.spage=299&rft.epage=369&rft.pages=299-369&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/s11854-020-0093-8&rft_dat=%3Cproquest_cross%3E2398856920%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-4aa2f6f4ed6031793de98e6c9e1806d86a1e2c053bca72d66fdea60bafaabd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2398856920&rft_id=info:pmid/&rfr_iscdi=true |