Loading…
Schur–Weyl quasi-duality and (co)triangular Hopf quasigroups
Schur–Weyl duality relates the representation theories of general linear and symmetric groups in defining characteristic and plays a central role in many parts of algebraic Lie theory. In this paper, we will introduce the notion of Schur–Weyl quasi-duality and study it. For this, generally, we consi...
Saved in:
Published in: | Journal of mathematical physics 2020-05, Vol.61 (5) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-54fd2b324bee70a5eab86107212c31b14125986b9075d4a2e32e69db02bb271d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-54fd2b324bee70a5eab86107212c31b14125986b9075d4a2e32e69db02bb271d3 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 61 |
creator | Shi, Guodong Wang, Shuanhong |
description | Schur–Weyl duality relates the representation theories of general linear and symmetric groups in defining characteristic and plays a central role in many parts of algebraic Lie theory. In this paper, we will introduce the notion of Schur–Weyl quasi-duality and study it. For this, generally, we consider a braided vector space (V,c) and its braided Lie algebra Endk(V)(−). Then, we can construct its braided enveloping algebra U(Endk(V)(−)), which is a connected braided c-cocommutative Hopf algebra. Let H be a triangular Hopf quasigroup with bijective antipode and B be a cotriangular Hopf quasigroup with bijective antipode. Let V be any finite dimensional vector space in the category LQ(H,R)(B,σ) of generalized Long quasimodules. We show that (U((EndkV)(−))⋆H⋆B,kSn,V⊗n) is a Schur–Weyl quasi-duality under suitable conditions. |
doi_str_mv | 10.1063/5.0005803 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2399547471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399547471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-54fd2b324bee70a5eab86107212c31b14125986b9075d4a2e32e69db02bb271d3</originalsourceid><addsrcrecordid>eNp90M9KwzAcB_AgCs7pwTcoeHFC5y__mvQiyFAnDDyoeAxJm86O2nRJI-zmO_iGPomTih4ET9_Lh-8XvggdY5hiyOg5nwIAl0B30AiDzFORcbmLRgCEpIRJuY8OQlgBYCwZG6GL--I5-o-39ye7aZJ11KFOy6ibut8kui2T08JNel_rdhkb7ZO566pBLb2LXThEe5Vugj36zjF6vL56mM3Txd3N7exykRaUiD7lrCqJoYQZawVobrWRGQZBMCkoNphhwnOZmRwEL5kmlhKb5aUBYgwRuKRjdDL0dt6tow29Wrno2-2kIjTPORNM4K2aDKrwLgRvK9X5-kX7jcKgvu5RXH3fs7Vngw1F3eu-du0PfnX-F6qurP7Df5s_AaFYcrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399547471</pqid></control><display><type>article</type><title>Schur–Weyl quasi-duality and (co)triangular Hopf quasigroups</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Shi, Guodong ; Wang, Shuanhong</creator><creatorcontrib>Shi, Guodong ; Wang, Shuanhong</creatorcontrib><description>Schur–Weyl duality relates the representation theories of general linear and symmetric groups in defining characteristic and plays a central role in many parts of algebraic Lie theory. In this paper, we will introduce the notion of Schur–Weyl quasi-duality and study it. For this, generally, we consider a braided vector space (V,c) and its braided Lie algebra Endk(V)(−). Then, we can construct its braided enveloping algebra U(Endk(V)(−)), which is a connected braided c-cocommutative Hopf algebra. Let H be a triangular Hopf quasigroup with bijective antipode and B be a cotriangular Hopf quasigroup with bijective antipode. Let V be any finite dimensional vector space in the category LQ(H,R)(B,σ) of generalized Long quasimodules. We show that (U((EndkV)(−))⋆H⋆B,kSn,V⊗n) is a Schur–Weyl quasi-duality under suitable conditions.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0005803</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Braiding ; Lie groups ; Physics ; Vector space</subject><ispartof>Journal of mathematical physics, 2020-05, Vol.61 (5)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-54fd2b324bee70a5eab86107212c31b14125986b9075d4a2e32e69db02bb271d3</citedby><cites>FETCH-LOGICAL-c327t-54fd2b324bee70a5eab86107212c31b14125986b9075d4a2e32e69db02bb271d3</cites><orcidid>0000-0002-2548-9725 ; 0000-0003-4912-3549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0005803$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Shi, Guodong</creatorcontrib><creatorcontrib>Wang, Shuanhong</creatorcontrib><title>Schur–Weyl quasi-duality and (co)triangular Hopf quasigroups</title><title>Journal of mathematical physics</title><description>Schur–Weyl duality relates the representation theories of general linear and symmetric groups in defining characteristic and plays a central role in many parts of algebraic Lie theory. In this paper, we will introduce the notion of Schur–Weyl quasi-duality and study it. For this, generally, we consider a braided vector space (V,c) and its braided Lie algebra Endk(V)(−). Then, we can construct its braided enveloping algebra U(Endk(V)(−)), which is a connected braided c-cocommutative Hopf algebra. Let H be a triangular Hopf quasigroup with bijective antipode and B be a cotriangular Hopf quasigroup with bijective antipode. Let V be any finite dimensional vector space in the category LQ(H,R)(B,σ) of generalized Long quasimodules. We show that (U((EndkV)(−))⋆H⋆B,kSn,V⊗n) is a Schur–Weyl quasi-duality under suitable conditions.</description><subject>Algebra</subject><subject>Braiding</subject><subject>Lie groups</subject><subject>Physics</subject><subject>Vector space</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M9KwzAcB_AgCs7pwTcoeHFC5y__mvQiyFAnDDyoeAxJm86O2nRJI-zmO_iGPomTih4ET9_Lh-8XvggdY5hiyOg5nwIAl0B30AiDzFORcbmLRgCEpIRJuY8OQlgBYCwZG6GL--I5-o-39ye7aZJ11KFOy6ibut8kui2T08JNel_rdhkb7ZO566pBLb2LXThEe5Vugj36zjF6vL56mM3Txd3N7exykRaUiD7lrCqJoYQZawVobrWRGQZBMCkoNphhwnOZmRwEL5kmlhKb5aUBYgwRuKRjdDL0dt6tow29Wrno2-2kIjTPORNM4K2aDKrwLgRvK9X5-kX7jcKgvu5RXH3fs7Vngw1F3eu-du0PfnX-F6qurP7Df5s_AaFYcrA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Shi, Guodong</creator><creator>Wang, Shuanhong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2548-9725</orcidid><orcidid>https://orcid.org/0000-0003-4912-3549</orcidid></search><sort><creationdate>20200501</creationdate><title>Schur–Weyl quasi-duality and (co)triangular Hopf quasigroups</title><author>Shi, Guodong ; Wang, Shuanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-54fd2b324bee70a5eab86107212c31b14125986b9075d4a2e32e69db02bb271d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Braiding</topic><topic>Lie groups</topic><topic>Physics</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Guodong</creatorcontrib><creatorcontrib>Wang, Shuanhong</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Guodong</au><au>Wang, Shuanhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schur–Weyl quasi-duality and (co)triangular Hopf quasigroups</atitle><jtitle>Journal of mathematical physics</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>61</volume><issue>5</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Schur–Weyl duality relates the representation theories of general linear and symmetric groups in defining characteristic and plays a central role in many parts of algebraic Lie theory. In this paper, we will introduce the notion of Schur–Weyl quasi-duality and study it. For this, generally, we consider a braided vector space (V,c) and its braided Lie algebra Endk(V)(−). Then, we can construct its braided enveloping algebra U(Endk(V)(−)), which is a connected braided c-cocommutative Hopf algebra. Let H be a triangular Hopf quasigroup with bijective antipode and B be a cotriangular Hopf quasigroup with bijective antipode. Let V be any finite dimensional vector space in the category LQ(H,R)(B,σ) of generalized Long quasimodules. We show that (U((EndkV)(−))⋆H⋆B,kSn,V⊗n) is a Schur–Weyl quasi-duality under suitable conditions.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0005803</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2548-9725</orcidid><orcidid>https://orcid.org/0000-0003-4912-3549</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2020-05, Vol.61 (5) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2399547471 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Algebra Braiding Lie groups Physics Vector space |
title | Schur–Weyl quasi-duality and (co)triangular Hopf quasigroups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schur%E2%80%93Weyl%20quasi-duality%20and%20(co)triangular%20Hopf%20quasigroups&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Shi,%20Guodong&rft.date=2020-05-01&rft.volume=61&rft.issue=5&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0005803&rft_dat=%3Cproquest_scita%3E2399547471%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-54fd2b324bee70a5eab86107212c31b14125986b9075d4a2e32e69db02bb271d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2399547471&rft_id=info:pmid/&rfr_iscdi=true |