Loading…
Optical frequency analysis on dark state of a single trapped ion
We demonstrate an optical frequency analysis method using the Fourier transform of detection times of fluorescence photons emitted from a single trapped 40Ca+ ion. The response of the detected photon rate to the relative laser frequency deviations is recorded within the slope of a dark resonance for...
Saved in:
Published in: | arXiv.org 2020-05 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate an optical frequency analysis method using the Fourier transform of detection times of fluorescence photons emitted from a single trapped 40Ca+ ion. The response of the detected photon rate to the relative laser frequency deviations is recorded within the slope of a dark resonance formed in the lambda-type energy level scheme corresponding to two optical dipole transitions. This approach enhances the sensitivity to the small frequency deviations and does so with reciprocal dependence on the fluorescence rate. The employed lasers are phase locked to an optical frequency comb, which allows for precise calibration of optical frequency analysis by deterministic modulation of the analyzed laser beam with respect to the reference beam. The attainable high signal-to-noise ratios of up to a MHz range of modulation deviations and up to a hundred kHz modulation frequencies promise the applicability of the presented results in a broad range of optical spectroscopic applications. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2005.02651 |