Loading…

Hierarchical linear and nonlinear adaptive learning model for system identification and prediction

In this paper, we propose a method to increase the model accuracy with linear and nonlinear sub-models. The linear sub-model applies the least square error (LSE) algorithm and the nonlinear sub-model uses neural networks (NN). The two sub-models are updated hierarchically using the Lyapunov function...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2020-06, Vol.50 (6), p.1699-1710
Main Authors: Jami’in, Mohammad Abu, Anam, Khairul, Rulaningtyas, Riries, Mudjiono, Urip, Adianto, Adianto, Wee, Hui-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e7c2ab3cbd57900bdd3f41b5e443d10987997675371bac8df7e9297efef329873
cites cdi_FETCH-LOGICAL-c319t-e7c2ab3cbd57900bdd3f41b5e443d10987997675371bac8df7e9297efef329873
container_end_page 1710
container_issue 6
container_start_page 1699
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 50
creator Jami’in, Mohammad Abu
Anam, Khairul
Rulaningtyas, Riries
Mudjiono, Urip
Adianto, Adianto
Wee, Hui-Ming
description In this paper, we propose a method to increase the model accuracy with linear and nonlinear sub-models. The linear sub-model applies the least square error (LSE) algorithm and the nonlinear sub-model uses neural networks (NN). The two sub-models are updated hierarchically using the Lyapunov function. The proposed method has two advantages: 1) The neural networks is a multi-parametric model. Using the proposed model, the weights of NN model can be summarized into the coefficients or parameters of auto-regressive eXogenous/auto-regressive moving average (ARX/ARMA) model structure, making it easier to establish control laws, 2) learning rate is updated to ensure the convergence of errors at each training epoch. One can improve the accuracy of model and the whole control system. We have demonstrated by the experimental studies that the proposed technique gives better results when compared to the existing studies.
doi_str_mv 10.1007/s10489-019-01615-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2399630703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399630703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e7c2ab3cbd57900bdd3f41b5e443d10987997675371bac8df7e9297efef329873</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPA8-pks7tpjlLUCgUvCt5CNpnUlG12TbZC_71pq3jzMAyPmfeG-Qi5ZnDLAMRdYlDNZAFsXw2rCzghE1YLXohKilMyAVlWRdPI93NykdIaADgHNiHtwmPU0Xx4ozva-YA6Uh0sDX34VVYPo_9C2mUVfFjRTW-xo66PNO3SiBvqLYbRu5wx-j4c_ENE681eXpIzp7uEVz99St4eH17ni2L58vQ8v18WhjM5FihMqVtuWlsLCdBay13F2hqrilsGciakFI2ouWCtNjPrBMpSCnToeJmnfEpujrlD7D-3mEa17rcx5JOq5FI2HER-ekrK45aJfUoRnRqi3-i4UwzUnqU6slSZpTqwVJBN_GhKeTmsMP5F_-P6BgOreK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399630703</pqid></control><display><type>article</type><title>Hierarchical linear and nonlinear adaptive learning model for system identification and prediction</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Jami’in, Mohammad Abu ; Anam, Khairul ; Rulaningtyas, Riries ; Mudjiono, Urip ; Adianto, Adianto ; Wee, Hui-Ming</creator><creatorcontrib>Jami’in, Mohammad Abu ; Anam, Khairul ; Rulaningtyas, Riries ; Mudjiono, Urip ; Adianto, Adianto ; Wee, Hui-Ming</creatorcontrib><description>In this paper, we propose a method to increase the model accuracy with linear and nonlinear sub-models. The linear sub-model applies the least square error (LSE) algorithm and the nonlinear sub-model uses neural networks (NN). The two sub-models are updated hierarchically using the Lyapunov function. The proposed method has two advantages: 1) The neural networks is a multi-parametric model. Using the proposed model, the weights of NN model can be summarized into the coefficients or parameters of auto-regressive eXogenous/auto-regressive moving average (ARX/ARMA) model structure, making it easier to establish control laws, 2) learning rate is updated to ensure the convergence of errors at each training epoch. One can improve the accuracy of model and the whole control system. We have demonstrated by the experimental studies that the proposed technique gives better results when compared to the existing studies.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-019-01615-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive learning ; Adaptive systems ; Algorithms ; Artificial Intelligence ; Autoregressive moving average ; Autoregressive moving-average models ; Computer Science ; Control theory ; Learning ; Liapunov functions ; Machines ; Manufacturing ; Mechanical Engineering ; Model accuracy ; Neural networks ; Processes ; System identification</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2020-06, Vol.50 (6), p.1699-1710</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e7c2ab3cbd57900bdd3f41b5e443d10987997675371bac8df7e9297efef329873</citedby><cites>FETCH-LOGICAL-c319t-e7c2ab3cbd57900bdd3f41b5e443d10987997675371bac8df7e9297efef329873</cites><orcidid>0000-0003-0663-2108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2399630703/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2399630703?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74767</link.rule.ids></links><search><creatorcontrib>Jami’in, Mohammad Abu</creatorcontrib><creatorcontrib>Anam, Khairul</creatorcontrib><creatorcontrib>Rulaningtyas, Riries</creatorcontrib><creatorcontrib>Mudjiono, Urip</creatorcontrib><creatorcontrib>Adianto, Adianto</creatorcontrib><creatorcontrib>Wee, Hui-Ming</creatorcontrib><title>Hierarchical linear and nonlinear adaptive learning model for system identification and prediction</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>In this paper, we propose a method to increase the model accuracy with linear and nonlinear sub-models. The linear sub-model applies the least square error (LSE) algorithm and the nonlinear sub-model uses neural networks (NN). The two sub-models are updated hierarchically using the Lyapunov function. The proposed method has two advantages: 1) The neural networks is a multi-parametric model. Using the proposed model, the weights of NN model can be summarized into the coefficients or parameters of auto-regressive eXogenous/auto-regressive moving average (ARX/ARMA) model structure, making it easier to establish control laws, 2) learning rate is updated to ensure the convergence of errors at each training epoch. One can improve the accuracy of model and the whole control system. We have demonstrated by the experimental studies that the proposed technique gives better results when compared to the existing studies.</description><subject>Adaptive learning</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Autoregressive moving average</subject><subject>Autoregressive moving-average models</subject><subject>Computer Science</subject><subject>Control theory</subject><subject>Learning</subject><subject>Liapunov functions</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Processes</subject><subject>System identification</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wFPA8-pks7tpjlLUCgUvCt5CNpnUlG12TbZC_71pq3jzMAyPmfeG-Qi5ZnDLAMRdYlDNZAFsXw2rCzghE1YLXohKilMyAVlWRdPI93NykdIaADgHNiHtwmPU0Xx4ozva-YA6Uh0sDX34VVYPo_9C2mUVfFjRTW-xo66PNO3SiBvqLYbRu5wx-j4c_ENE681eXpIzp7uEVz99St4eH17ni2L58vQ8v18WhjM5FihMqVtuWlsLCdBay13F2hqrilsGciakFI2ouWCtNjPrBMpSCnToeJmnfEpujrlD7D-3mEa17rcx5JOq5FI2HER-ekrK45aJfUoRnRqi3-i4UwzUnqU6slSZpTqwVJBN_GhKeTmsMP5F_-P6BgOreK0</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Jami’in, Mohammad Abu</creator><creator>Anam, Khairul</creator><creator>Rulaningtyas, Riries</creator><creator>Mudjiono, Urip</creator><creator>Adianto, Adianto</creator><creator>Wee, Hui-Ming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0663-2108</orcidid></search><sort><creationdate>20200601</creationdate><title>Hierarchical linear and nonlinear adaptive learning model for system identification and prediction</title><author>Jami’in, Mohammad Abu ; Anam, Khairul ; Rulaningtyas, Riries ; Mudjiono, Urip ; Adianto, Adianto ; Wee, Hui-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e7c2ab3cbd57900bdd3f41b5e443d10987997675371bac8df7e9297efef329873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive learning</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Autoregressive moving average</topic><topic>Autoregressive moving-average models</topic><topic>Computer Science</topic><topic>Control theory</topic><topic>Learning</topic><topic>Liapunov functions</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Processes</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jami’in, Mohammad Abu</creatorcontrib><creatorcontrib>Anam, Khairul</creatorcontrib><creatorcontrib>Rulaningtyas, Riries</creatorcontrib><creatorcontrib>Mudjiono, Urip</creatorcontrib><creatorcontrib>Adianto, Adianto</creatorcontrib><creatorcontrib>Wee, Hui-Ming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jami’in, Mohammad Abu</au><au>Anam, Khairul</au><au>Rulaningtyas, Riries</au><au>Mudjiono, Urip</au><au>Adianto, Adianto</au><au>Wee, Hui-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical linear and nonlinear adaptive learning model for system identification and prediction</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>50</volume><issue>6</issue><spage>1699</spage><epage>1710</epage><pages>1699-1710</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>In this paper, we propose a method to increase the model accuracy with linear and nonlinear sub-models. The linear sub-model applies the least square error (LSE) algorithm and the nonlinear sub-model uses neural networks (NN). The two sub-models are updated hierarchically using the Lyapunov function. The proposed method has two advantages: 1) The neural networks is a multi-parametric model. Using the proposed model, the weights of NN model can be summarized into the coefficients or parameters of auto-regressive eXogenous/auto-regressive moving average (ARX/ARMA) model structure, making it easier to establish control laws, 2) learning rate is updated to ensure the convergence of errors at each training epoch. One can improve the accuracy of model and the whole control system. We have demonstrated by the experimental studies that the proposed technique gives better results when compared to the existing studies.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-019-01615-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0663-2108</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2020-06, Vol.50 (6), p.1699-1710
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2399630703
source ABI/INFORM Collection; Springer Nature
subjects Adaptive learning
Adaptive systems
Algorithms
Artificial Intelligence
Autoregressive moving average
Autoregressive moving-average models
Computer Science
Control theory
Learning
Liapunov functions
Machines
Manufacturing
Mechanical Engineering
Model accuracy
Neural networks
Processes
System identification
title Hierarchical linear and nonlinear adaptive learning model for system identification and prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20linear%20and%20nonlinear%20adaptive%20learning%20model%20for%20system%20identification%20and%20prediction&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Jami%E2%80%99in,%20Mohammad%20Abu&rft.date=2020-06-01&rft.volume=50&rft.issue=6&rft.spage=1699&rft.epage=1710&rft.pages=1699-1710&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-019-01615-0&rft_dat=%3Cproquest_cross%3E2399630703%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e7c2ab3cbd57900bdd3f41b5e443d10987997675371bac8df7e9297efef329873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2399630703&rft_id=info:pmid/&rfr_iscdi=true