Loading…
Thermophilic methanotrophs: in hot pursuit
ABSTRACT Methane is a potent greenhouse gas responsible for 20–30% of global climate change effects. The global methane budget is ∼500–600 Tg y−1, with the majority of methane produced via microbial processes, including anthropogenic-mediated sources such as ruminant animals, rice fields, sewage tre...
Saved in:
Published in: | FEMS microbiology ecology 2019-09, Vol.95 (9), p.1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-4a932c123dcf55ec60aef101b4e05380466bb25dcea3370dbb8b4924b481724d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c487t-4a932c123dcf55ec60aef101b4e05380466bb25dcea3370dbb8b4924b481724d3 |
container_end_page | |
container_issue | 9 |
container_start_page | 1 |
container_title | FEMS microbiology ecology |
container_volume | 95 |
creator | Houghton, Karen M Carere, Carlo R Stott, Matthew B McDonald, Ian R |
description | ABSTRACT
Methane is a potent greenhouse gas responsible for 20–30% of global climate change effects. The global methane budget is ∼500–600 Tg y−1, with the majority of methane produced via microbial processes, including anthropogenic-mediated sources such as ruminant animals, rice fields, sewage treatment facilities and landfills. It is estimated that microbially mediated methane oxidation (methanotrophy) consumes >50% of global methane flux each year. Methanotrophy research has primarily focused on mesophilic methanotrophic representatives and cooler environments such as freshwater, wetlands or marine habitats from which they are sourced. Nevertheless, geothermal emissions of geological methane, produced from magma and lithosphere degassing micro-seepages, mud volcanoes and other geological sources, contribute an estimated 33–75 Tg y−1 to the global methane budget. The aim of this review is to summarise current literature pertaining to the activity of thermophilic and thermotolerant methanotrophs, both proteobacterial (Methylocaldum, Methylococcus, Methylothermus) and verrucomicrobial (Methylacidiphilum). We assert, on the basis of recently reported molecular and geochemical data, that geothermal ecosystems host hitherto unidentified species capable of methane oxidation at higher temperatures.
This review summarises data on thermophilic and thermotolerant methanotrophs and proposes that geothermal ecosystems host unrecognised species capable of methane oxidation at high temperatures, based on recently reported data. |
doi_str_mv | 10.1093/femsec/fiz125 |
format | article |
fullrecord | <record><control><sourceid>gale_TOX</sourceid><recordid>TN_cdi_proquest_journals_2399881018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A606789896</galeid><oup_id>10.1093/femsec/fiz125</oup_id><sourcerecordid>A606789896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-4a932c123dcf55ec60aef101b4e05380466bb25dcea3370dbb8b4924b481724d3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMorq4evUrBiwjdTZqkTb0ti1-w4GU9hyRNbJZtU5P2oH-9ka5fIMgcZnj85s3wADhDcIZgiedGN0GrubFvKKN74AjRgqR5SdD-j3kCjkPYQIgoJvAQTDDCBaEFPAJX61r7xnW13VqVNLqvRet6H4Vwndg2qV2fdIMPg-1PwIER26BPd30Knm5v1sv7dPV497BcrFJFWNGnRJQ4UyjDlTKUapVDoQ2CSBINKWaQ5LmUGa2UFhgXsJKSSVJmRBKGioxUeAouRt_Ou5dBh55v3ODbeJJnuCwZi2bsm3oWW81ta-LXQjU2KL7IYV6wkpV5pGZ_ULEq3VjlWm1s1H8tpOOC8i4Erw3vvG2Ef-UI8o_A-Rg4HwOP_Pnu2UE2uvqiPxOOwOUIuKH7x-sdLAKI5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399881018</pqid></control><display><type>article</type><title>Thermophilic methanotrophs: in hot pursuit</title><source>Oxford Academic Journals (Open Access)</source><creator>Houghton, Karen M ; Carere, Carlo R ; Stott, Matthew B ; McDonald, Ian R</creator><creatorcontrib>Houghton, Karen M ; Carere, Carlo R ; Stott, Matthew B ; McDonald, Ian R</creatorcontrib><description>ABSTRACT
Methane is a potent greenhouse gas responsible for 20–30% of global climate change effects. The global methane budget is ∼500–600 Tg y−1, with the majority of methane produced via microbial processes, including anthropogenic-mediated sources such as ruminant animals, rice fields, sewage treatment facilities and landfills. It is estimated that microbially mediated methane oxidation (methanotrophy) consumes >50% of global methane flux each year. Methanotrophy research has primarily focused on mesophilic methanotrophic representatives and cooler environments such as freshwater, wetlands or marine habitats from which they are sourced. Nevertheless, geothermal emissions of geological methane, produced from magma and lithosphere degassing micro-seepages, mud volcanoes and other geological sources, contribute an estimated 33–75 Tg y−1 to the global methane budget. The aim of this review is to summarise current literature pertaining to the activity of thermophilic and thermotolerant methanotrophs, both proteobacterial (Methylocaldum, Methylococcus, Methylothermus) and verrucomicrobial (Methylacidiphilum). We assert, on the basis of recently reported molecular and geochemical data, that geothermal ecosystems host hitherto unidentified species capable of methane oxidation at higher temperatures.
This review summarises data on thermophilic and thermotolerant methanotrophs and proposes that geothermal ecosystems host unrecognised species capable of methane oxidation at high temperatures, based on recently reported data.</description><identifier>ISSN: 1574-6941</identifier><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1093/femsec/fiz125</identifier><identifier>PMID: 31374570</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Anthropogenic factors ; Aquatic habitats ; Bacteria, Thermophilic ; Budgets ; Chemical properties ; Climate change ; Climate effects ; Degassing ; Ecology ; Environmental aspects ; Geology ; Global climate ; Greenhouse effect ; Greenhouse gases ; High temperature ; Landfills ; Lithosphere ; Magma ; Methane ; Methanotrophic bacteria ; Methanotrophs ; Microbiology ; Microorganisms ; Oxidation ; Rice fields ; Sewage treatment ; Volcanoes ; Waste disposal sites ; Wastewater treatment</subject><ispartof>FEMS microbiology ecology, 2019-09, Vol.95 (9), p.1</ispartof><rights>FEMS 2019. 2019</rights><rights>FEMS 2019.</rights><rights>COPYRIGHT 2019 Oxford University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-4a932c123dcf55ec60aef101b4e05380466bb25dcea3370dbb8b4924b481724d3</citedby><cites>FETCH-LOGICAL-c487t-4a932c123dcf55ec60aef101b4e05380466bb25dcea3370dbb8b4924b481724d3</cites><orcidid>0000-0002-5618-6321 ; 0000-0002-2082-9460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/femsec/fiz125$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31374570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Houghton, Karen M</creatorcontrib><creatorcontrib>Carere, Carlo R</creatorcontrib><creatorcontrib>Stott, Matthew B</creatorcontrib><creatorcontrib>McDonald, Ian R</creatorcontrib><title>Thermophilic methanotrophs: in hot pursuit</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>ABSTRACT
Methane is a potent greenhouse gas responsible for 20–30% of global climate change effects. The global methane budget is ∼500–600 Tg y−1, with the majority of methane produced via microbial processes, including anthropogenic-mediated sources such as ruminant animals, rice fields, sewage treatment facilities and landfills. It is estimated that microbially mediated methane oxidation (methanotrophy) consumes >50% of global methane flux each year. Methanotrophy research has primarily focused on mesophilic methanotrophic representatives and cooler environments such as freshwater, wetlands or marine habitats from which they are sourced. Nevertheless, geothermal emissions of geological methane, produced from magma and lithosphere degassing micro-seepages, mud volcanoes and other geological sources, contribute an estimated 33–75 Tg y−1 to the global methane budget. The aim of this review is to summarise current literature pertaining to the activity of thermophilic and thermotolerant methanotrophs, both proteobacterial (Methylocaldum, Methylococcus, Methylothermus) and verrucomicrobial (Methylacidiphilum). We assert, on the basis of recently reported molecular and geochemical data, that geothermal ecosystems host hitherto unidentified species capable of methane oxidation at higher temperatures.
This review summarises data on thermophilic and thermotolerant methanotrophs and proposes that geothermal ecosystems host unrecognised species capable of methane oxidation at high temperatures, based on recently reported data.</description><subject>Anthropogenic factors</subject><subject>Aquatic habitats</subject><subject>Bacteria, Thermophilic</subject><subject>Budgets</subject><subject>Chemical properties</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Degassing</subject><subject>Ecology</subject><subject>Environmental aspects</subject><subject>Geology</subject><subject>Global climate</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>High temperature</subject><subject>Landfills</subject><subject>Lithosphere</subject><subject>Magma</subject><subject>Methane</subject><subject>Methanotrophic bacteria</subject><subject>Methanotrophs</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Oxidation</subject><subject>Rice fields</subject><subject>Sewage treatment</subject><subject>Volcanoes</subject><subject>Waste disposal sites</subject><subject>Wastewater treatment</subject><issn>1574-6941</issn><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMorq4evUrBiwjdTZqkTb0ti1-w4GU9hyRNbJZtU5P2oH-9ka5fIMgcZnj85s3wADhDcIZgiedGN0GrubFvKKN74AjRgqR5SdD-j3kCjkPYQIgoJvAQTDDCBaEFPAJX61r7xnW13VqVNLqvRet6H4Vwndg2qV2fdIMPg-1PwIER26BPd30Knm5v1sv7dPV497BcrFJFWNGnRJQ4UyjDlTKUapVDoQ2CSBINKWaQ5LmUGa2UFhgXsJKSSVJmRBKGioxUeAouRt_Ou5dBh55v3ODbeJJnuCwZi2bsm3oWW81ta-LXQjU2KL7IYV6wkpV5pGZ_ULEq3VjlWm1s1H8tpOOC8i4Erw3vvG2Ef-UI8o_A-Rg4HwOP_Pnu2UE2uvqiPxOOwOUIuKH7x-sdLAKI5w</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Houghton, Karen M</creator><creator>Carere, Carlo R</creator><creator>Stott, Matthew B</creator><creator>McDonald, Ian R</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-5618-6321</orcidid><orcidid>https://orcid.org/0000-0002-2082-9460</orcidid></search><sort><creationdate>20190901</creationdate><title>Thermophilic methanotrophs: in hot pursuit</title><author>Houghton, Karen M ; Carere, Carlo R ; Stott, Matthew B ; McDonald, Ian R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-4a932c123dcf55ec60aef101b4e05380466bb25dcea3370dbb8b4924b481724d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anthropogenic factors</topic><topic>Aquatic habitats</topic><topic>Bacteria, Thermophilic</topic><topic>Budgets</topic><topic>Chemical properties</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Degassing</topic><topic>Ecology</topic><topic>Environmental aspects</topic><topic>Geology</topic><topic>Global climate</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>High temperature</topic><topic>Landfills</topic><topic>Lithosphere</topic><topic>Magma</topic><topic>Methane</topic><topic>Methanotrophic bacteria</topic><topic>Methanotrophs</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Oxidation</topic><topic>Rice fields</topic><topic>Sewage treatment</topic><topic>Volcanoes</topic><topic>Waste disposal sites</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houghton, Karen M</creatorcontrib><creatorcontrib>Carere, Carlo R</creatorcontrib><creatorcontrib>Stott, Matthew B</creatorcontrib><creatorcontrib>McDonald, Ian R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Houghton, Karen M</au><au>Carere, Carlo R</au><au>Stott, Matthew B</au><au>McDonald, Ian R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermophilic methanotrophs: in hot pursuit</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>95</volume><issue>9</issue><spage>1</spage><pages>1-</pages><issn>1574-6941</issn><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>ABSTRACT
Methane is a potent greenhouse gas responsible for 20–30% of global climate change effects. The global methane budget is ∼500–600 Tg y−1, with the majority of methane produced via microbial processes, including anthropogenic-mediated sources such as ruminant animals, rice fields, sewage treatment facilities and landfills. It is estimated that microbially mediated methane oxidation (methanotrophy) consumes >50% of global methane flux each year. Methanotrophy research has primarily focused on mesophilic methanotrophic representatives and cooler environments such as freshwater, wetlands or marine habitats from which they are sourced. Nevertheless, geothermal emissions of geological methane, produced from magma and lithosphere degassing micro-seepages, mud volcanoes and other geological sources, contribute an estimated 33–75 Tg y−1 to the global methane budget. The aim of this review is to summarise current literature pertaining to the activity of thermophilic and thermotolerant methanotrophs, both proteobacterial (Methylocaldum, Methylococcus, Methylothermus) and verrucomicrobial (Methylacidiphilum). We assert, on the basis of recently reported molecular and geochemical data, that geothermal ecosystems host hitherto unidentified species capable of methane oxidation at higher temperatures.
This review summarises data on thermophilic and thermotolerant methanotrophs and proposes that geothermal ecosystems host unrecognised species capable of methane oxidation at high temperatures, based on recently reported data.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31374570</pmid><doi>10.1093/femsec/fiz125</doi><orcidid>https://orcid.org/0000-0002-5618-6321</orcidid><orcidid>https://orcid.org/0000-0002-2082-9460</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1574-6941 |
ispartof | FEMS microbiology ecology, 2019-09, Vol.95 (9), p.1 |
issn | 1574-6941 0168-6496 1574-6941 |
language | eng |
recordid | cdi_proquest_journals_2399881018 |
source | Oxford Academic Journals (Open Access) |
subjects | Anthropogenic factors Aquatic habitats Bacteria, Thermophilic Budgets Chemical properties Climate change Climate effects Degassing Ecology Environmental aspects Geology Global climate Greenhouse effect Greenhouse gases High temperature Landfills Lithosphere Magma Methane Methanotrophic bacteria Methanotrophs Microbiology Microorganisms Oxidation Rice fields Sewage treatment Volcanoes Waste disposal sites Wastewater treatment |
title | Thermophilic methanotrophs: in hot pursuit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermophilic%20methanotrophs:%20in%20hot%20pursuit&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Houghton,%20Karen%20M&rft.date=2019-09-01&rft.volume=95&rft.issue=9&rft.spage=1&rft.pages=1-&rft.issn=1574-6941&rft.eissn=1574-6941&rft_id=info:doi/10.1093/femsec/fiz125&rft_dat=%3Cgale_TOX%3EA606789896%3C/gale_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-4a932c123dcf55ec60aef101b4e05380466bb25dcea3370dbb8b4924b481724d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2399881018&rft_id=info:pmid/31374570&rft_galeid=A606789896&rft_oup_id=10.1093/femsec/fiz125&rfr_iscdi=true |