Loading…

Interannual Relationship between the Boreal Spring Arctic Oscillation and the Northern Hemisphere Hadley Circulation Extent

This study investigates the interannual relationship and the dynamical linkage between the boreal spring Arctic Oscillation (AO) and the Northern Hemisphere Hadley circulation extent (HCE). The spring AO is positively correlated with the HCE, with one standard positive deviation of the AO index corr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2019-07, Vol.32 (14), p.4395-4408
Main Authors: Hu, Dingzhu, Guo, Yi-Peng, Tan, Zhe-Min, Guan, Zhaoyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-cdc023b3389f1b5b1ffaee440fc50aa999966bc8dd66cee989f4c44f52809e943
cites cdi_FETCH-LOGICAL-c382t-cdc023b3389f1b5b1ffaee440fc50aa999966bc8dd66cee989f4c44f52809e943
container_end_page 4408
container_issue 14
container_start_page 4395
container_title Journal of climate
container_volume 32
creator Hu, Dingzhu
Guo, Yi-Peng
Tan, Zhe-Min
Guan, Zhaoyong
description This study investigates the interannual relationship and the dynamical linkage between the boreal spring Arctic Oscillation (AO) and the Northern Hemisphere Hadley circulation extent (HCE). The spring AO is positively correlated with the HCE, with one standard positive deviation of the AO index corresponding to approximately 0.42° latitude poleward shift of the HCE. The interaction between the planetary wave and the zonal winds over the subtropics results in an anomalous eddy momentum flux divergence, which shifts the HCE poleward. The AO related transient eddy momentum flux divergence makes nearly 2 times larger contributions than those of the stationary component to the HCE change. The increased equatorward transient wave flux over the subtropics is possibly related to the larger meridional gradient of the transient wave refractive index there. The AO positive phase corresponds to an enhanced planetary wave propagation from the midlatitude Atlantic Ocean to the subtropics, which resembles the North Atlantic Oscillation pattern. The autumn and winter AO–HCE relationship is similar to that during spring, while summer has the weakest relationship, which could be mainly attributed to the far poleward extension of the climatological HCE during summer.
doi_str_mv 10.1175/JCLI-D-18-0657.1
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2399991888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26740380</jstor_id><sourcerecordid>26740380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-cdc023b3389f1b5b1ffaee440fc50aa999966bc8dd66cee989f4c44f52809e943</originalsourceid><addsrcrecordid>eNo9kM1PwzAMxSMEEmNw54IUiXOH06ZdehzbYEMTk_g4R2nqsk5dOpJUMPHPk7EJX54l_54tP0KuGQwYG6Z3T-PFPJpETESQpcMBOyE9lsYQAefxKemByHkkhml6Ti6cWwOwOAPokZ-58WiVMZ1q6As2ytetcat6Swv0X4iG-hXS-9ZimL9ubW0-6MhqX2u6dLpuDgaqTPkHPrc2iDV0hpvabUOLdKbKBnd0XFvdHfHpt0fjL8lZpRqHV0ftk_eH6dt4Fi2Wj_PxaBHpRMQ-0qWGOCmSROQVK9KCVZVC5BwqnYJSeagsK7QoyyzTiHnAuOa8SmMBOeY86ZPbw96tbT87dF6u286acFLGyd7OhBCBggOlbeucxUqGbzfK7iQDuY9Y7iOWE8mE3EcsWbDcHCxr51v7z8fZkEMiIPkFu8x7Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399991888</pqid></control><display><type>article</type><title>Interannual Relationship between the Boreal Spring Arctic Oscillation and the Northern Hemisphere Hadley Circulation Extent</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Hu, Dingzhu ; Guo, Yi-Peng ; Tan, Zhe-Min ; Guan, Zhaoyong</creator><creatorcontrib>Hu, Dingzhu ; Guo, Yi-Peng ; Tan, Zhe-Min ; Guan, Zhaoyong</creatorcontrib><description>This study investigates the interannual relationship and the dynamical linkage between the boreal spring Arctic Oscillation (AO) and the Northern Hemisphere Hadley circulation extent (HCE). The spring AO is positively correlated with the HCE, with one standard positive deviation of the AO index corresponding to approximately 0.42° latitude poleward shift of the HCE. The interaction between the planetary wave and the zonal winds over the subtropics results in an anomalous eddy momentum flux divergence, which shifts the HCE poleward. The AO related transient eddy momentum flux divergence makes nearly 2 times larger contributions than those of the stationary component to the HCE change. The increased equatorward transient wave flux over the subtropics is possibly related to the larger meridional gradient of the transient wave refractive index there. The AO positive phase corresponds to an enhanced planetary wave propagation from the midlatitude Atlantic Ocean to the subtropics, which resembles the North Atlantic Oscillation pattern. The autumn and winter AO–HCE relationship is similar to that during spring, while summer has the weakest relationship, which could be mainly attributed to the far poleward extension of the climatological HCE during summer.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-18-0657.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Arctic Oscillation ; Atmospheric forcing ; Atmospheric pressure ; Datasets ; Eddy momentum flux ; Fluctuations ; Flux ; Hadley circulation ; Latitude ; Momentum ; Momentum flux ; Momentum transfer ; North Atlantic Oscillation ; Northern Hemisphere ; Ocean-atmosphere system ; Planetary wave propagation ; Planetary waves ; Precipitation ; Propagation ; Refractive index ; Refractivity ; Spring ; Spring (season) ; Studies ; Summer ; Vortices ; Wave propagation ; Winds ; Zonal winds</subject><ispartof>Journal of climate, 2019-07, Vol.32 (14), p.4395-4408</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jul 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-cdc023b3389f1b5b1ffaee440fc50aa999966bc8dd66cee989f4c44f52809e943</citedby><cites>FETCH-LOGICAL-c382t-cdc023b3389f1b5b1ffaee440fc50aa999966bc8dd66cee989f4c44f52809e943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26740380$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26740380$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Hu, Dingzhu</creatorcontrib><creatorcontrib>Guo, Yi-Peng</creatorcontrib><creatorcontrib>Tan, Zhe-Min</creatorcontrib><creatorcontrib>Guan, Zhaoyong</creatorcontrib><title>Interannual Relationship between the Boreal Spring Arctic Oscillation and the Northern Hemisphere Hadley Circulation Extent</title><title>Journal of climate</title><description>This study investigates the interannual relationship and the dynamical linkage between the boreal spring Arctic Oscillation (AO) and the Northern Hemisphere Hadley circulation extent (HCE). The spring AO is positively correlated with the HCE, with one standard positive deviation of the AO index corresponding to approximately 0.42° latitude poleward shift of the HCE. The interaction between the planetary wave and the zonal winds over the subtropics results in an anomalous eddy momentum flux divergence, which shifts the HCE poleward. The AO related transient eddy momentum flux divergence makes nearly 2 times larger contributions than those of the stationary component to the HCE change. The increased equatorward transient wave flux over the subtropics is possibly related to the larger meridional gradient of the transient wave refractive index there. The AO positive phase corresponds to an enhanced planetary wave propagation from the midlatitude Atlantic Ocean to the subtropics, which resembles the North Atlantic Oscillation pattern. The autumn and winter AO–HCE relationship is similar to that during spring, while summer has the weakest relationship, which could be mainly attributed to the far poleward extension of the climatological HCE during summer.</description><subject>Arctic Oscillation</subject><subject>Atmospheric forcing</subject><subject>Atmospheric pressure</subject><subject>Datasets</subject><subject>Eddy momentum flux</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>Hadley circulation</subject><subject>Latitude</subject><subject>Momentum</subject><subject>Momentum flux</subject><subject>Momentum transfer</subject><subject>North Atlantic Oscillation</subject><subject>Northern Hemisphere</subject><subject>Ocean-atmosphere system</subject><subject>Planetary wave propagation</subject><subject>Planetary waves</subject><subject>Precipitation</subject><subject>Propagation</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Studies</subject><subject>Summer</subject><subject>Vortices</subject><subject>Wave propagation</subject><subject>Winds</subject><subject>Zonal winds</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PwzAMxSMEEmNw54IUiXOH06ZdehzbYEMTk_g4R2nqsk5dOpJUMPHPk7EJX54l_54tP0KuGQwYG6Z3T-PFPJpETESQpcMBOyE9lsYQAefxKemByHkkhml6Ti6cWwOwOAPokZ-58WiVMZ1q6As2ytetcat6Swv0X4iG-hXS-9ZimL9ubW0-6MhqX2u6dLpuDgaqTPkHPrc2iDV0hpvabUOLdKbKBnd0XFvdHfHpt0fjL8lZpRqHV0ftk_eH6dt4Fi2Wj_PxaBHpRMQ-0qWGOCmSROQVK9KCVZVC5BwqnYJSeagsK7QoyyzTiHnAuOa8SmMBOeY86ZPbw96tbT87dF6u286acFLGyd7OhBCBggOlbeucxUqGbzfK7iQDuY9Y7iOWE8mE3EcsWbDcHCxr51v7z8fZkEMiIPkFu8x7Sw</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Hu, Dingzhu</creator><creator>Guo, Yi-Peng</creator><creator>Tan, Zhe-Min</creator><creator>Guan, Zhaoyong</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190715</creationdate><title>Interannual Relationship between the Boreal Spring Arctic Oscillation and the Northern Hemisphere Hadley Circulation Extent</title><author>Hu, Dingzhu ; Guo, Yi-Peng ; Tan, Zhe-Min ; Guan, Zhaoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-cdc023b3389f1b5b1ffaee440fc50aa999966bc8dd66cee989f4c44f52809e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arctic Oscillation</topic><topic>Atmospheric forcing</topic><topic>Atmospheric pressure</topic><topic>Datasets</topic><topic>Eddy momentum flux</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>Hadley circulation</topic><topic>Latitude</topic><topic>Momentum</topic><topic>Momentum flux</topic><topic>Momentum transfer</topic><topic>North Atlantic Oscillation</topic><topic>Northern Hemisphere</topic><topic>Ocean-atmosphere system</topic><topic>Planetary wave propagation</topic><topic>Planetary waves</topic><topic>Precipitation</topic><topic>Propagation</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Studies</topic><topic>Summer</topic><topic>Vortices</topic><topic>Wave propagation</topic><topic>Winds</topic><topic>Zonal winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Dingzhu</creatorcontrib><creatorcontrib>Guo, Yi-Peng</creatorcontrib><creatorcontrib>Tan, Zhe-Min</creatorcontrib><creatorcontrib>Guan, Zhaoyong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Military Database</collection><collection>Research Library (ProQuest)</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Dingzhu</au><au>Guo, Yi-Peng</au><au>Tan, Zhe-Min</au><au>Guan, Zhaoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interannual Relationship between the Boreal Spring Arctic Oscillation and the Northern Hemisphere Hadley Circulation Extent</atitle><jtitle>Journal of climate</jtitle><date>2019-07-15</date><risdate>2019</risdate><volume>32</volume><issue>14</issue><spage>4395</spage><epage>4408</epage><pages>4395-4408</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>This study investigates the interannual relationship and the dynamical linkage between the boreal spring Arctic Oscillation (AO) and the Northern Hemisphere Hadley circulation extent (HCE). The spring AO is positively correlated with the HCE, with one standard positive deviation of the AO index corresponding to approximately 0.42° latitude poleward shift of the HCE. The interaction between the planetary wave and the zonal winds over the subtropics results in an anomalous eddy momentum flux divergence, which shifts the HCE poleward. The AO related transient eddy momentum flux divergence makes nearly 2 times larger contributions than those of the stationary component to the HCE change. The increased equatorward transient wave flux over the subtropics is possibly related to the larger meridional gradient of the transient wave refractive index there. The AO positive phase corresponds to an enhanced planetary wave propagation from the midlatitude Atlantic Ocean to the subtropics, which resembles the North Atlantic Oscillation pattern. The autumn and winter AO–HCE relationship is similar to that during spring, while summer has the weakest relationship, which could be mainly attributed to the far poleward extension of the climatological HCE during summer.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-18-0657.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2019-07, Vol.32 (14), p.4395-4408
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_2399991888
source JSTOR Archival Journals and Primary Sources Collection
subjects Arctic Oscillation
Atmospheric forcing
Atmospheric pressure
Datasets
Eddy momentum flux
Fluctuations
Flux
Hadley circulation
Latitude
Momentum
Momentum flux
Momentum transfer
North Atlantic Oscillation
Northern Hemisphere
Ocean-atmosphere system
Planetary wave propagation
Planetary waves
Precipitation
Propagation
Refractive index
Refractivity
Spring
Spring (season)
Studies
Summer
Vortices
Wave propagation
Winds
Zonal winds
title Interannual Relationship between the Boreal Spring Arctic Oscillation and the Northern Hemisphere Hadley Circulation Extent
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interannual%20Relationship%20between%20the%20Boreal%20Spring%20Arctic%20Oscillation%20and%20the%20Northern%20Hemisphere%20Hadley%20Circulation%20Extent&rft.jtitle=Journal%20of%20climate&rft.au=Hu,%20Dingzhu&rft.date=2019-07-15&rft.volume=32&rft.issue=14&rft.spage=4395&rft.epage=4408&rft.pages=4395-4408&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-18-0657.1&rft_dat=%3Cjstor_proqu%3E26740380%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-cdc023b3389f1b5b1ffaee440fc50aa999966bc8dd66cee989f4c44f52809e943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2399991888&rft_id=info:pmid/&rft_jstor_id=26740380&rfr_iscdi=true