Loading…

Can the symmetrical Dewar pyridine be observed experimentally? A theoretical study

In this work we study the possibility of the photochemical formation of the symmetrical Dewar pyridine (1-azabicyclo-[2,2,0]-hexa-2,5-diene), by applying the complete active space self-consistent field method and the multiconfigurational second-order perturbation theory to explore the corresponding...

Full description

Saved in:
Bibliographic Details
Published in:Molecular physics 2020-04, Vol.118 (7), p.e1662126
Main Authors: Varras, Panayiotis C., Gritzapis, Panagiotis S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-e19b32e07d22d4815316aa29cc0c8deceacb00c2ea82baed47ac64db9e113ddc3
cites cdi_FETCH-LOGICAL-c385t-e19b32e07d22d4815316aa29cc0c8deceacb00c2ea82baed47ac64db9e113ddc3
container_end_page
container_issue 7
container_start_page e1662126
container_title Molecular physics
container_volume 118
creator Varras, Panayiotis C.
Gritzapis, Panagiotis S.
description In this work we study the possibility of the photochemical formation of the symmetrical Dewar pyridine (1-azabicyclo-[2,2,0]-hexa-2,5-diene), by applying the complete active space self-consistent field method and the multiconfigurational second-order perturbation theory to explore the corresponding ground and excited state potential energy surfaces. According to our theoretical calculations there are three possible paths that can be followed, one is a biphotonic process which involves irradiating pyridine in its ground state with a 358 nm laser guiding the system to an intersystem crossing S 1 /T 1 /S 0 of triple character whereby deactivation to the ground state, S 0 , Dewar minimum occurs, the second one, which is a ground state thermal reaction involves the use of a far-Infra-Red laser where planar pyridine is vibrationally excited to a very high vibrational level whose energy is comparable to that of the ground state transition structure, S 0 (TS), connecting the symmetrical S 0 Dewar pyridine and the ground state of planar pyridine. The third process is also a biphotonic one involving excitation of planar pyridine with an energy which is in the limits of its ionisation potential. In this case there is a theoretically accessible S 1 /S 0 Conical Intersection which leads directly to the ground state of the symmetrical Dewar pyridine.
doi_str_mv 10.1080/00268976.2019.1662126
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2400035357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400035357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e19b32e07d22d4815316aa29cc0c8deceacb00c2ea82baed47ac64db9e113ddc3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwCUiWWKeM7cRJVlCVp1QJCcHacuyJSJUXtkvJ35PQsmU1m3PuzFxCLhksGGRwDcBllqdywYHlCyYlZ1wekRkTkkcCeHZMZhMTTdApOfN-AwASGMzI60q3NHwg9UPTYHCV0TW9w512tB9cZasWaYG0Kzy6L7QUv3t0VYNt0HU93NDlJHcOw6_ow9YO5-Sk1LXHi8Ock_eH-7fVU7R-eXxeLdeREVkSImR5IThCajm3ccYSwaTWPDcGTGbRoDYFgOGoM15otHGqjYxtkSNjwloj5uRqn9u77nOLPqhNt3XtuFLxeHxQJCJJRyrZU8Z13jssVT_er92gGKipPvVXn5rqU4f6Ru9271Vt2blG7zpXWxX0UHeudLo1lVfi_4gfMIZ4Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400035357</pqid></control><display><type>article</type><title>Can the symmetrical Dewar pyridine be observed experimentally? A theoretical study</title><source>Taylor and Francis Science and Technology Collection</source><creator>Varras, Panayiotis C. ; Gritzapis, Panagiotis S.</creator><creatorcontrib>Varras, Panayiotis C. ; Gritzapis, Panagiotis S.</creatorcontrib><description>In this work we study the possibility of the photochemical formation of the symmetrical Dewar pyridine (1-azabicyclo-[2,2,0]-hexa-2,5-diene), by applying the complete active space self-consistent field method and the multiconfigurational second-order perturbation theory to explore the corresponding ground and excited state potential energy surfaces. According to our theoretical calculations there are three possible paths that can be followed, one is a biphotonic process which involves irradiating pyridine in its ground state with a 358 nm laser guiding the system to an intersystem crossing S 1 /T 1 /S 0 of triple character whereby deactivation to the ground state, S 0 , Dewar minimum occurs, the second one, which is a ground state thermal reaction involves the use of a far-Infra-Red laser where planar pyridine is vibrationally excited to a very high vibrational level whose energy is comparable to that of the ground state transition structure, S 0 (TS), connecting the symmetrical S 0 Dewar pyridine and the ground state of planar pyridine. The third process is also a biphotonic one involving excitation of planar pyridine with an energy which is in the limits of its ionisation potential. In this case there is a theoretically accessible S 1 /S 0 Conical Intersection which leads directly to the ground state of the symmetrical Dewar pyridine.</description><identifier>ISSN: 0026-8976</identifier><identifier>EISSN: 1362-3028</identifier><identifier>DOI: 10.1080/00268976.2019.1662126</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>CASMP2 ; CASSCF ; conical intersection (CoIn) ; Deactivation ; Dewar pyridine ; Ground state ; intersystem crossing (ISC) ; Ionization potentials ; Perturbation theory ; Potential energy ; Self consistent fields ; symmetrical Dewar pyridine</subject><ispartof>Molecular physics, 2020-04, Vol.118 (7), p.e1662126</ispartof><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-e19b32e07d22d4815316aa29cc0c8deceacb00c2ea82baed47ac64db9e113ddc3</citedby><cites>FETCH-LOGICAL-c385t-e19b32e07d22d4815316aa29cc0c8deceacb00c2ea82baed47ac64db9e113ddc3</cites><orcidid>0000-0003-4280-5475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Varras, Panayiotis C.</creatorcontrib><creatorcontrib>Gritzapis, Panagiotis S.</creatorcontrib><title>Can the symmetrical Dewar pyridine be observed experimentally? A theoretical study</title><title>Molecular physics</title><description>In this work we study the possibility of the photochemical formation of the symmetrical Dewar pyridine (1-azabicyclo-[2,2,0]-hexa-2,5-diene), by applying the complete active space self-consistent field method and the multiconfigurational second-order perturbation theory to explore the corresponding ground and excited state potential energy surfaces. According to our theoretical calculations there are three possible paths that can be followed, one is a biphotonic process which involves irradiating pyridine in its ground state with a 358 nm laser guiding the system to an intersystem crossing S 1 /T 1 /S 0 of triple character whereby deactivation to the ground state, S 0 , Dewar minimum occurs, the second one, which is a ground state thermal reaction involves the use of a far-Infra-Red laser where planar pyridine is vibrationally excited to a very high vibrational level whose energy is comparable to that of the ground state transition structure, S 0 (TS), connecting the symmetrical S 0 Dewar pyridine and the ground state of planar pyridine. The third process is also a biphotonic one involving excitation of planar pyridine with an energy which is in the limits of its ionisation potential. In this case there is a theoretically accessible S 1 /S 0 Conical Intersection which leads directly to the ground state of the symmetrical Dewar pyridine.</description><subject>CASMP2</subject><subject>CASSCF</subject><subject>conical intersection (CoIn)</subject><subject>Deactivation</subject><subject>Dewar pyridine</subject><subject>Ground state</subject><subject>intersystem crossing (ISC)</subject><subject>Ionization potentials</subject><subject>Perturbation theory</subject><subject>Potential energy</subject><subject>Self consistent fields</subject><subject>symmetrical Dewar pyridine</subject><issn>0026-8976</issn><issn>1362-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwCUiWWKeM7cRJVlCVp1QJCcHacuyJSJUXtkvJ35PQsmU1m3PuzFxCLhksGGRwDcBllqdywYHlCyYlZ1wekRkTkkcCeHZMZhMTTdApOfN-AwASGMzI60q3NHwg9UPTYHCV0TW9w512tB9cZasWaYG0Kzy6L7QUv3t0VYNt0HU93NDlJHcOw6_ow9YO5-Sk1LXHi8Ock_eH-7fVU7R-eXxeLdeREVkSImR5IThCajm3ccYSwaTWPDcGTGbRoDYFgOGoM15otHGqjYxtkSNjwloj5uRqn9u77nOLPqhNt3XtuFLxeHxQJCJJRyrZU8Z13jssVT_er92gGKipPvVXn5rqU4f6Ru9271Vt2blG7zpXWxX0UHeudLo1lVfi_4gfMIZ4Ew</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Varras, Panayiotis C.</creator><creator>Gritzapis, Panagiotis S.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4280-5475</orcidid></search><sort><creationdate>20200402</creationdate><title>Can the symmetrical Dewar pyridine be observed experimentally? A theoretical study</title><author>Varras, Panayiotis C. ; Gritzapis, Panagiotis S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e19b32e07d22d4815316aa29cc0c8deceacb00c2ea82baed47ac64db9e113ddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CASMP2</topic><topic>CASSCF</topic><topic>conical intersection (CoIn)</topic><topic>Deactivation</topic><topic>Dewar pyridine</topic><topic>Ground state</topic><topic>intersystem crossing (ISC)</topic><topic>Ionization potentials</topic><topic>Perturbation theory</topic><topic>Potential energy</topic><topic>Self consistent fields</topic><topic>symmetrical Dewar pyridine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varras, Panayiotis C.</creatorcontrib><creatorcontrib>Gritzapis, Panagiotis S.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Molecular physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varras, Panayiotis C.</au><au>Gritzapis, Panagiotis S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can the symmetrical Dewar pyridine be observed experimentally? A theoretical study</atitle><jtitle>Molecular physics</jtitle><date>2020-04-02</date><risdate>2020</risdate><volume>118</volume><issue>7</issue><spage>e1662126</spage><pages>e1662126-</pages><issn>0026-8976</issn><eissn>1362-3028</eissn><abstract>In this work we study the possibility of the photochemical formation of the symmetrical Dewar pyridine (1-azabicyclo-[2,2,0]-hexa-2,5-diene), by applying the complete active space self-consistent field method and the multiconfigurational second-order perturbation theory to explore the corresponding ground and excited state potential energy surfaces. According to our theoretical calculations there are three possible paths that can be followed, one is a biphotonic process which involves irradiating pyridine in its ground state with a 358 nm laser guiding the system to an intersystem crossing S 1 /T 1 /S 0 of triple character whereby deactivation to the ground state, S 0 , Dewar minimum occurs, the second one, which is a ground state thermal reaction involves the use of a far-Infra-Red laser where planar pyridine is vibrationally excited to a very high vibrational level whose energy is comparable to that of the ground state transition structure, S 0 (TS), connecting the symmetrical S 0 Dewar pyridine and the ground state of planar pyridine. The third process is also a biphotonic one involving excitation of planar pyridine with an energy which is in the limits of its ionisation potential. In this case there is a theoretically accessible S 1 /S 0 Conical Intersection which leads directly to the ground state of the symmetrical Dewar pyridine.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00268976.2019.1662126</doi><orcidid>https://orcid.org/0000-0003-4280-5475</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-8976
ispartof Molecular physics, 2020-04, Vol.118 (7), p.e1662126
issn 0026-8976
1362-3028
language eng
recordid cdi_proquest_journals_2400035357
source Taylor and Francis Science and Technology Collection
subjects CASMP2
CASSCF
conical intersection (CoIn)
Deactivation
Dewar pyridine
Ground state
intersystem crossing (ISC)
Ionization potentials
Perturbation theory
Potential energy
Self consistent fields
symmetrical Dewar pyridine
title Can the symmetrical Dewar pyridine be observed experimentally? A theoretical study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20the%20symmetrical%20Dewar%20pyridine%20be%20observed%20experimentally?%20A%20theoretical%20study&rft.jtitle=Molecular%20physics&rft.au=Varras,%20Panayiotis%20C.&rft.date=2020-04-02&rft.volume=118&rft.issue=7&rft.spage=e1662126&rft.pages=e1662126-&rft.issn=0026-8976&rft.eissn=1362-3028&rft_id=info:doi/10.1080/00268976.2019.1662126&rft_dat=%3Cproquest_infor%3E2400035357%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-e19b32e07d22d4815316aa29cc0c8deceacb00c2ea82baed47ac64db9e113ddc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2400035357&rft_id=info:pmid/&rfr_iscdi=true