Loading…
The response of the atmosphere to solar variations
The present work examines and discusses the response of the atmospheric layers to solar variations, whereas the solar outputs are responsible for the changes in the Earth’s environment. Galactic cosmic ray rates (GCRs), solar cycle lengths (SCLs), sunspots (Rz), coronal index (CI) of solar activitie...
Saved in:
Published in: | Indian journal of physics 2020-06, Vol.94 (6), p.737-752 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present work examines and discusses the response of the atmospheric layers to solar variations, whereas the solar outputs are responsible for the changes in the Earth’s environment. Galactic cosmic ray rates (GCRs), solar cycle lengths (SCLs), sunspots (Rz), coronal index (CI) of solar activities, the aa geomagnetic activity index, total solar irradiance (TSI), CO
2
concentrations, global surface temperatures (GSTs), the near-Earth of the northern and southern hemispheres temperatures have been examined. Our results displayed that every SCL has different behaviors to the sensitivity of GST, according to different modulations of GCRs by solar wind/helio-magnetic field parameters. Lower cosmic rays and higher solar irradiance and geomagnetic activity occur when solar activity increases. Furthermore, the average sensitivities of global temperature to geomagnetics aa and total solar irradiance and in turn low-level cloud cover are significant and real. Our results could indicate that geomagnetic disturbances, which driven by the solar wind, may influence global temperature. Both correlations of GST–Rz displayed the same behavior to the end of SC 22nd, and a great discrepancy is observed during the SC 23rd. The observed correlations of Rz with NH and SH temperatures displayed different behaviors. Four different mechanisms are involved in the direct/indirect effect of TSI variations on the Earth’s atmosphere and temperatures. |
---|---|
ISSN: | 0973-1458 0974-9845 |
DOI: | 10.1007/s12648-019-01502-x |