Loadingā€¦

Hybrid genetic and particle swarm algorithm: redundancy allocation problem

Redundancy allocation problem (RAP) is a non-linear programming problem which is very difficult to solve through existing heuristic and non-heuristic methods. In this research paper, three algorithms namely heuristic algorithm (HA), constraint optimization genetic algorithm (COGA) and hybrid genetic...

Full description

Saved in:
Bibliographic Details
Published in:International journal of system assurance engineering and management 2020-04, Vol.11 (2), p.313-319
Main Authors: Devi, Sarita, Garg, Deepika
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Redundancy allocation problem (RAP) is a non-linear programming problem which is very difficult to solve through existing heuristic and non-heuristic methods. In this research paper, three algorithms namely heuristic algorithm (HA), constraint optimization genetic algorithm (COGA) and hybrid genetic algorithm combined with particle swarm optimization (HGAPSO) are applied to solve RAP. Results obtained from individual use of genetic algorithm (GA) and particle swarm optimization (PSO) encompass some shortcomings. To overcome the shortcomings with their individual use, HGAPSO is introduced which combines fascinating properties of GA and PSO. Iterative process of GA is used by this hybrid approach after fixing initial best population from PSO. The results obtained from HA, COGA and HGAPSO with respect to increase in reliability are 50.76, 47.30 and 62.31 respectively and results with respect to CPU time obtained are 0.15, 0.209 and 3.07 respectively as shown in TableĀ  3 of this paper. COGA and HGAPSO are programmed by Matlab.
ISSN:0975-6809
0976-4348
DOI:10.1007/s13198-019-00858-x