Loading…
Modularity measures: Concepts, computation, and applications to manufacturing systems
We propose a measure to quantify the modularity of industrial production (manufacturing) systems and optimization formulations to compute it. From a manufacturing perspective, we argue that a system is deemed modular if: (a) the equipment units that comprise it form clusters (modules) of dense conne...
Saved in:
Published in: | AIChE journal 2020-06, Vol.66 (6), p.n/a |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4045-2674de3d23538ad31d363511dd8ac89c9687f7428de29813f485e4d3a590dc313 |
---|---|
cites | cdi_FETCH-LOGICAL-c4045-2674de3d23538ad31d363511dd8ac89c9687f7428de29813f485e4d3a590dc313 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | |
container_title | AIChE journal |
container_volume | 66 |
creator | Shao, Yue Zavala, Victor M. |
description | We propose a measure to quantify the modularity of industrial production (manufacturing) systems and optimization formulations to compute it. From a manufacturing perspective, we argue that a system is deemed modular if: (a) the equipment units that comprise it form clusters (modules) of dense connectivity (i.e., difficult module assembly tasks are performed off‐site), (b) connectivity between modules is sparse (i.e., easy assembly tasks are performed on‐site), (c) the number of modules is small, and (d) the module dimensions facilitate transportation. We show that the measure proposed satisfies these requirements and that it can be computed by solving a convex mixed‐integer quadratic program. We provide a discussion on advantages and disadvantages of alternative modularity measures used in different scientific and engineering communities. Our results seek to highlight conceptual and computational challenges that arise from the need to define and quantify modularity in a manufacturing context. |
doi_str_mv | 10.1002/aic.16965 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2400193463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400193463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4045-2674de3d23538ad31d363511dd8ac89c9687f7428de29813f485e4d3a590dc313</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcPfoOAT8K65W-b-jbK1MHEF_ccQpJKR9vUJEX67Y2rrz5d7uF37uUcAO4xWmOEyEY1eo3zMucXYIE5KzJeIn4JFgghnCUBX4ObEE5pI4UgC3B8c2ZslW_iBDurwuhteIKV67UdYlhB7bphjCo2rl9B1RuohqFt9FkIMDrYqX6slY6jb_pPGKYQbRduwVWt2mDv_uYSHJ93H9Vrdnh_2VfbQ6YZYjwjecGMpYZQToUyFBuaU46xMUJpUeoyF0VdMCKMJaXAtGaCW2aoSqGMppguwcN8d_Dua7QhypMbfZ9eSsJSxpKynCbqcaa0dyF4W8vBN53yk8RI_rYmU2vy3FpiNzP73bR2-h-U2301O34AHSJuJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400193463</pqid></control><display><type>article</type><title>Modularity measures: Concepts, computation, and applications to manufacturing systems</title><source>Wiley</source><creator>Shao, Yue ; Zavala, Victor M.</creator><creatorcontrib>Shao, Yue ; Zavala, Victor M.</creatorcontrib><description>We propose a measure to quantify the modularity of industrial production (manufacturing) systems and optimization formulations to compute it. From a manufacturing perspective, we argue that a system is deemed modular if: (a) the equipment units that comprise it form clusters (modules) of dense connectivity (i.e., difficult module assembly tasks are performed off‐site), (b) connectivity between modules is sparse (i.e., easy assembly tasks are performed on‐site), (c) the number of modules is small, and (d) the module dimensions facilitate transportation. We show that the measure proposed satisfies these requirements and that it can be computed by solving a convex mixed‐integer quadratic program. We provide a discussion on advantages and disadvantages of alternative modularity measures used in different scientific and engineering communities. Our results seek to highlight conceptual and computational challenges that arise from the need to define and quantify modularity in a manufacturing context.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.16965</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Assembly ; Computer applications ; graph theory ; Industrial production ; Manufacturing ; Modular equipment ; Modular systems ; Modularity ; Modules ; Optimization ; organization</subject><ispartof>AIChE journal, 2020-06, Vol.66 (6), p.n/a</ispartof><rights>2020 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4045-2674de3d23538ad31d363511dd8ac89c9687f7428de29813f485e4d3a590dc313</citedby><cites>FETCH-LOGICAL-c4045-2674de3d23538ad31d363511dd8ac89c9687f7428de29813f485e4d3a590dc313</cites><orcidid>0000-0002-5744-7378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shao, Yue</creatorcontrib><creatorcontrib>Zavala, Victor M.</creatorcontrib><title>Modularity measures: Concepts, computation, and applications to manufacturing systems</title><title>AIChE journal</title><description>We propose a measure to quantify the modularity of industrial production (manufacturing) systems and optimization formulations to compute it. From a manufacturing perspective, we argue that a system is deemed modular if: (a) the equipment units that comprise it form clusters (modules) of dense connectivity (i.e., difficult module assembly tasks are performed off‐site), (b) connectivity between modules is sparse (i.e., easy assembly tasks are performed on‐site), (c) the number of modules is small, and (d) the module dimensions facilitate transportation. We show that the measure proposed satisfies these requirements and that it can be computed by solving a convex mixed‐integer quadratic program. We provide a discussion on advantages and disadvantages of alternative modularity measures used in different scientific and engineering communities. Our results seek to highlight conceptual and computational challenges that arise from the need to define and quantify modularity in a manufacturing context.</description><subject>Assembly</subject><subject>Computer applications</subject><subject>graph theory</subject><subject>Industrial production</subject><subject>Manufacturing</subject><subject>Modular equipment</subject><subject>Modular systems</subject><subject>Modularity</subject><subject>Modules</subject><subject>Optimization</subject><subject>organization</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcPfoOAT8K65W-b-jbK1MHEF_ccQpJKR9vUJEX67Y2rrz5d7uF37uUcAO4xWmOEyEY1eo3zMucXYIE5KzJeIn4JFgghnCUBX4ObEE5pI4UgC3B8c2ZslW_iBDurwuhteIKV67UdYlhB7bphjCo2rl9B1RuohqFt9FkIMDrYqX6slY6jb_pPGKYQbRduwVWt2mDv_uYSHJ93H9Vrdnh_2VfbQ6YZYjwjecGMpYZQToUyFBuaU46xMUJpUeoyF0VdMCKMJaXAtGaCW2aoSqGMppguwcN8d_Dua7QhypMbfZ9eSsJSxpKynCbqcaa0dyF4W8vBN53yk8RI_rYmU2vy3FpiNzP73bR2-h-U2301O34AHSJuJA</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Shao, Yue</creator><creator>Zavala, Victor M.</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5744-7378</orcidid></search><sort><creationdate>202006</creationdate><title>Modularity measures: Concepts, computation, and applications to manufacturing systems</title><author>Shao, Yue ; Zavala, Victor M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4045-2674de3d23538ad31d363511dd8ac89c9687f7428de29813f485e4d3a590dc313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Assembly</topic><topic>Computer applications</topic><topic>graph theory</topic><topic>Industrial production</topic><topic>Manufacturing</topic><topic>Modular equipment</topic><topic>Modular systems</topic><topic>Modularity</topic><topic>Modules</topic><topic>Optimization</topic><topic>organization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Yue</creatorcontrib><creatorcontrib>Zavala, Victor M.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Yue</au><au>Zavala, Victor M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modularity measures: Concepts, computation, and applications to manufacturing systems</atitle><jtitle>AIChE journal</jtitle><date>2020-06</date><risdate>2020</risdate><volume>66</volume><issue>6</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>We propose a measure to quantify the modularity of industrial production (manufacturing) systems and optimization formulations to compute it. From a manufacturing perspective, we argue that a system is deemed modular if: (a) the equipment units that comprise it form clusters (modules) of dense connectivity (i.e., difficult module assembly tasks are performed off‐site), (b) connectivity between modules is sparse (i.e., easy assembly tasks are performed on‐site), (c) the number of modules is small, and (d) the module dimensions facilitate transportation. We show that the measure proposed satisfies these requirements and that it can be computed by solving a convex mixed‐integer quadratic program. We provide a discussion on advantages and disadvantages of alternative modularity measures used in different scientific and engineering communities. Our results seek to highlight conceptual and computational challenges that arise from the need to define and quantify modularity in a manufacturing context.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.16965</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5744-7378</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2020-06, Vol.66 (6), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2400193463 |
source | Wiley |
subjects | Assembly Computer applications graph theory Industrial production Manufacturing Modular equipment Modular systems Modularity Modules Optimization organization |
title | Modularity measures: Concepts, computation, and applications to manufacturing systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modularity%20measures:%20Concepts,%20computation,%20and%20applications%20to%20manufacturing%20systems&rft.jtitle=AIChE%20journal&rft.au=Shao,%20Yue&rft.date=2020-06&rft.volume=66&rft.issue=6&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.16965&rft_dat=%3Cproquest_cross%3E2400193463%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4045-2674de3d23538ad31d363511dd8ac89c9687f7428de29813f485e4d3a590dc313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2400193463&rft_id=info:pmid/&rfr_iscdi=true |