Loading…
Recent developments and applications of genetic transformation and genome editing technologies in wheat
Wheat ( Triticum aestivum ) is a staple crop across the world and plays a remarkable role in food supplying security. Over the past few decades, basic and applied research on wheat has lagged behind other cereal crops due to the complex and polyploid genome and difficulties in genetic transformation...
Saved in:
Published in: | Theoretical and applied genetics 2020-05, Vol.133 (5), p.1603-1622 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wheat (
Triticum aestivum
) is a staple crop across the world and plays a remarkable role in food supplying security. Over the past few decades, basic and applied research on wheat has lagged behind other cereal crops due to the complex and polyploid genome and difficulties in genetic transformation. A breakthrough called as PureWheat was made in the genetic transformation of wheat in 2014 in Asia, leading to a noticeable progress of wheat genome editing. Due to this great achievement, it is predicated that wheat biotechnology revolution is arriving. Genome editing technologies using zinc finger nucleases, transcription activator-like effector nuclease, and clustered regularly interspaced short palindromic repeats-associated endonucleases (CRISR/Cas) are becoming powerful tools for crop modification which can help biologists and biotechnologists better understand the processes of mutagenesis and genomic alteration. Among the three genome editing systems, CRISR/Cas has high specificity and activity, and therefore it is widely used in genetic engineering. Generally, the genome editing technologies depend on an efficient genetic transformation system. In this paper, we summarize recent progresses and applications on genetic transformation and genome editing in wheat. We also examine the future aspects of genetic transformation and genome editing. We believe that the technologies for wheat efficient genetic engineering and functional studies will become routine with the emergence of high-quality genomic sequences. |
---|---|
ISSN: | 0040-5752 1432-2242 |
DOI: | 10.1007/s00122-019-03464-4 |