Loading…

Electrochemical Immunosensor Based on Highly Sensitive Amino Functionalized Graphene Nanoplatelets-Modified Screen Printed Carbon Electrode

We presented here the development of an immunosensor based on graphene nanoplatelets-modified screen printed carbon electrode (SPCE) with incorporated rabbit IgG on the amino functionalized surface area. In order to improve sensitivity of working electrode, graphene-nanoplatelets solution was fabric...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2020-03, Vol.833, p.171-175
Main Authors: Mohd Azmi, Mohd Azraie, Said, Nur Azura Mohd, Badruzaman, Nurul Azurin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We presented here the development of an immunosensor based on graphene nanoplatelets-modified screen printed carbon electrode (SPCE) with incorporated rabbit IgG on the amino functionalized surface area. In order to improve sensitivity of working electrode, graphene-nanoplatelets solution was fabricated onto surface carbon working electrode. The effect of different (3-aminopropyl) triethoxysilane (APTES) concentrations (0.125, 0.5, 2 and 8% (v/v)) and incubation time of silanization (30, 60 and 90 min) were studied and compared. An electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to characterize our immunosensor based. It is showed that the optimum APTES concentration which provides higher surface coverage and electron transfer rate was 2% concentration (v/v) at 60 min of incubation time. The modified surface was then evaluated by measuring immobilized rabbit IgG via indirect assay using horseradish peroxidase labelled secondary antibody. The optimum detection immobilized IgG was 0.05 mg/mL. These results indicate the potential for amino functionalized graphene nanoplatelets-modified SPCE in detecting protein biomarkers.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.833.171