Loading…

Social Uncertainty Evaluation of Social Impact Bonds: A Model and Practical Application

In the last years, Social Impact Bonds (SIBs) have gained popularity in the impact investing space. A number of scholars and practitioners are debating—in theory and practice—the opportunities, challenges and obstacles of these financial models. Amongst others, social uncertainty evaluation metrics...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2020-05, Vol.12 (9), p.3854
Main Authors: Rania, Francesco, Trotta, Annarita, Carè, Rosella, Migliazza, Maria Cristina, Kabli, Abdellah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-d5787b8654eb45a5efb963f57a9a7daa6240c0756fd697c01b5d6735b272c1d63
cites cdi_FETCH-LOGICAL-c295t-d5787b8654eb45a5efb963f57a9a7daa6240c0756fd697c01b5d6735b272c1d63
container_end_page
container_issue 9
container_start_page 3854
container_title Sustainability
container_volume 12
creator Rania, Francesco
Trotta, Annarita
Carè, Rosella
Migliazza, Maria Cristina
Kabli, Abdellah
description In the last years, Social Impact Bonds (SIBs) have gained popularity in the impact investing space. A number of scholars and practitioners are debating—in theory and practice—the opportunities, challenges and obstacles of these financial models. Amongst others, social uncertainty evaluation metrics appear as a critical factor for the future development of the SIB market. The present work aims to shed some light on this issue, by realizing a practical application of a model—which is an extension of a framework previously proposed—for social uncertainty evaluation in SIBs. In our exploratory analysis, 34 SIBs were selected for the empirical tests. We combined the Analytic Hierarchical Process (AHP) with the creation of aggregate measure, deriving by suitable indicators at the end of the tree. Our findings open new avenues for future research in the field of uncertainty factors in the SIB landscape. Finally, our results represent a basis for implementing a prediction model for social uncertainty evaluation.
doi_str_mv 10.3390/su12093854
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2401563044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401563044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d5787b8654eb45a5efb963f57a9a7daa6240c0756fd697c01b5d6735b272c1d63</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOOZe_AUB34Rq0jRJ49scUwcTBR0-ltskhY6uqUkq7N-bsYHel3vgfuceOAhdU3LHmCL3YaQ5UazkxRma5ETSjBJOzv_pSzQLYUvSMEYVFRP09eF0Cx3e9Nr6CG0f93j5A90IsXU9dg0-AavdADriR9eb8IDn-NUZ22HoDX736dDqxMyHoUvi4LxCFw10wc5Oe4o2T8vPxUu2fnteLebrTOeKx8xwWcq6FLywdcGB26ZWgjVcggJpAEReEE0kF40RSmpCa26EZLzOZa6pEWyKbo5_B---RxtitXWj71NklayUC0aKIlG3R0p7F4K3TTX4dgd-X1FSHbqr_rpjv_P4X-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401563044</pqid></control><display><type>article</type><title>Social Uncertainty Evaluation of Social Impact Bonds: A Model and Practical Application</title><source>Publicly Available Content (ProQuest)</source><creator>Rania, Francesco ; Trotta, Annarita ; Carè, Rosella ; Migliazza, Maria Cristina ; Kabli, Abdellah</creator><creatorcontrib>Rania, Francesco ; Trotta, Annarita ; Carè, Rosella ; Migliazza, Maria Cristina ; Kabli, Abdellah</creatorcontrib><description>In the last years, Social Impact Bonds (SIBs) have gained popularity in the impact investing space. A number of scholars and practitioners are debating—in theory and practice—the opportunities, challenges and obstacles of these financial models. Amongst others, social uncertainty evaluation metrics appear as a critical factor for the future development of the SIB market. The present work aims to shed some light on this issue, by realizing a practical application of a model—which is an extension of a framework previously proposed—for social uncertainty evaluation in SIBs. In our exploratory analysis, 34 SIBs were selected for the empirical tests. We combined the Analytic Hierarchical Process (AHP) with the creation of aggregate measure, deriving by suitable indicators at the end of the tree. Our findings open new avenues for future research in the field of uncertainty factors in the SIB landscape. Finally, our results represent a basis for implementing a prediction model for social uncertainty evaluation.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su12093854</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Decision theory ; Evaluation ; Prediction models ; Social impact ; Sustainability ; Uncertainty</subject><ispartof>Sustainability, 2020-05, Vol.12 (9), p.3854</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d5787b8654eb45a5efb963f57a9a7daa6240c0756fd697c01b5d6735b272c1d63</citedby><cites>FETCH-LOGICAL-c295t-d5787b8654eb45a5efb963f57a9a7daa6240c0756fd697c01b5d6735b272c1d63</cites><orcidid>0000-0003-3222-0510 ; 0000-0002-2518-266X ; 0000-0002-8298-2268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2401563044/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2401563044?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Rania, Francesco</creatorcontrib><creatorcontrib>Trotta, Annarita</creatorcontrib><creatorcontrib>Carè, Rosella</creatorcontrib><creatorcontrib>Migliazza, Maria Cristina</creatorcontrib><creatorcontrib>Kabli, Abdellah</creatorcontrib><title>Social Uncertainty Evaluation of Social Impact Bonds: A Model and Practical Application</title><title>Sustainability</title><description>In the last years, Social Impact Bonds (SIBs) have gained popularity in the impact investing space. A number of scholars and practitioners are debating—in theory and practice—the opportunities, challenges and obstacles of these financial models. Amongst others, social uncertainty evaluation metrics appear as a critical factor for the future development of the SIB market. The present work aims to shed some light on this issue, by realizing a practical application of a model—which is an extension of a framework previously proposed—for social uncertainty evaluation in SIBs. In our exploratory analysis, 34 SIBs were selected for the empirical tests. We combined the Analytic Hierarchical Process (AHP) with the creation of aggregate measure, deriving by suitable indicators at the end of the tree. Our findings open new avenues for future research in the field of uncertainty factors in the SIB landscape. Finally, our results represent a basis for implementing a prediction model for social uncertainty evaluation.</description><subject>Decision theory</subject><subject>Evaluation</subject><subject>Prediction models</subject><subject>Social impact</subject><subject>Sustainability</subject><subject>Uncertainty</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkFFLwzAUhYMoOOZe_AUB34Rq0jRJ49scUwcTBR0-ltskhY6uqUkq7N-bsYHel3vgfuceOAhdU3LHmCL3YaQ5UazkxRma5ETSjBJOzv_pSzQLYUvSMEYVFRP09eF0Cx3e9Nr6CG0f93j5A90IsXU9dg0-AavdADriR9eb8IDn-NUZ22HoDX736dDqxMyHoUvi4LxCFw10wc5Oe4o2T8vPxUu2fnteLebrTOeKx8xwWcq6FLywdcGB26ZWgjVcggJpAEReEE0kF40RSmpCa26EZLzOZa6pEWyKbo5_B---RxtitXWj71NklayUC0aKIlG3R0p7F4K3TTX4dgd-X1FSHbqr_rpjv_P4X-E</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Rania, Francesco</creator><creator>Trotta, Annarita</creator><creator>Carè, Rosella</creator><creator>Migliazza, Maria Cristina</creator><creator>Kabli, Abdellah</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3222-0510</orcidid><orcidid>https://orcid.org/0000-0002-2518-266X</orcidid><orcidid>https://orcid.org/0000-0002-8298-2268</orcidid></search><sort><creationdate>20200501</creationdate><title>Social Uncertainty Evaluation of Social Impact Bonds: A Model and Practical Application</title><author>Rania, Francesco ; Trotta, Annarita ; Carè, Rosella ; Migliazza, Maria Cristina ; Kabli, Abdellah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d5787b8654eb45a5efb963f57a9a7daa6240c0756fd697c01b5d6735b272c1d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Decision theory</topic><topic>Evaluation</topic><topic>Prediction models</topic><topic>Social impact</topic><topic>Sustainability</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rania, Francesco</creatorcontrib><creatorcontrib>Trotta, Annarita</creatorcontrib><creatorcontrib>Carè, Rosella</creatorcontrib><creatorcontrib>Migliazza, Maria Cristina</creatorcontrib><creatorcontrib>Kabli, Abdellah</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rania, Francesco</au><au>Trotta, Annarita</au><au>Carè, Rosella</au><au>Migliazza, Maria Cristina</au><au>Kabli, Abdellah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social Uncertainty Evaluation of Social Impact Bonds: A Model and Practical Application</atitle><jtitle>Sustainability</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>12</volume><issue>9</issue><spage>3854</spage><pages>3854-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In the last years, Social Impact Bonds (SIBs) have gained popularity in the impact investing space. A number of scholars and practitioners are debating—in theory and practice—the opportunities, challenges and obstacles of these financial models. Amongst others, social uncertainty evaluation metrics appear as a critical factor for the future development of the SIB market. The present work aims to shed some light on this issue, by realizing a practical application of a model—which is an extension of a framework previously proposed—for social uncertainty evaluation in SIBs. In our exploratory analysis, 34 SIBs were selected for the empirical tests. We combined the Analytic Hierarchical Process (AHP) with the creation of aggregate measure, deriving by suitable indicators at the end of the tree. Our findings open new avenues for future research in the field of uncertainty factors in the SIB landscape. Finally, our results represent a basis for implementing a prediction model for social uncertainty evaluation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su12093854</doi><orcidid>https://orcid.org/0000-0003-3222-0510</orcidid><orcidid>https://orcid.org/0000-0002-2518-266X</orcidid><orcidid>https://orcid.org/0000-0002-8298-2268</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2020-05, Vol.12 (9), p.3854
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2401563044
source Publicly Available Content (ProQuest)
subjects Decision theory
Evaluation
Prediction models
Social impact
Sustainability
Uncertainty
title Social Uncertainty Evaluation of Social Impact Bonds: A Model and Practical Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social%20Uncertainty%20Evaluation%20of%20Social%20Impact%20Bonds:%20A%20Model%20and%20Practical%20Application&rft.jtitle=Sustainability&rft.au=Rania,%20Francesco&rft.date=2020-05-01&rft.volume=12&rft.issue=9&rft.spage=3854&rft.pages=3854-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su12093854&rft_dat=%3Cproquest_cross%3E2401563044%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-d5787b8654eb45a5efb963f57a9a7daa6240c0756fd697c01b5d6735b272c1d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2401563044&rft_id=info:pmid/&rfr_iscdi=true