Loading…

Herbivory on Handroanthus ochraceus (Bignoniaceae) along a successional gradient in a tropical dry forest

This study determined the temporal patterns of herbivory on Handroanthus ochraceus (Cham.) Mattos (Bignoniaceae) along a successional gradient in a seasonally dry tropical forest (SDTF) in southeastern Brazil. We assessed the diversity of free-feeding herbivore insects (sap-suckers and leaf-chewers)...

Full description

Saved in:
Bibliographic Details
Published in:Arthropod-plant interactions 2012-03, Vol.6 (1), p.45-57
Main Authors: Silva, Jhonathan O., Espírito-Santo, Mário M., Melo, Geraldo A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study determined the temporal patterns of herbivory on Handroanthus ochraceus (Cham.) Mattos (Bignoniaceae) along a successional gradient in a seasonally dry tropical forest (SDTF) in southeastern Brazil. We assessed the diversity of free-feeding herbivore insects (sap-suckers and leaf-chewers), leaf herbivory rates, leaf nitrogen content, phenolic compounds, and spider abundance through the rainy season in three different successional stages (early, intermediate, and late). Sampling was conducted in December, at the beginning of the rainy season (with fully expanded young leaves), February (mid-aged leaves), and April, at the end of rainy season (old leaves). Fifteen reproductive trees of H. ochraceus were sampled per successional stage in each month of sampling. Herbivore diversity was highest in the early stage of succession, but herbivory rates were highest in the intermediate and late stages. This result was probably related to differences in herbivore community composition and leaf quality across successional stages. The highest herbivore abundance was found in April in the early successional stage. In addition, we found low levels of herbivory in the intermediate and late successional stages in the second half of the rainy season. For each successional stage, leaf nitrogen content decreased through the rainy season, whereas the concentration of phenolic compounds increased. For the intermediate and late successional stages, the temporal changes that took place as the rainy season progressed corroborated the following hypotheses postulated for SDTFs: (1) both the abundance of chewing insects and herbivory rates decreased, (2) the abundance of natural enemies (i.e., spiders) increased, and (3) leaf quality decreased. These results suggest that the described herbivory patterns are robust for advanced successional stages (intermediate and late) of the SDTFs, but may not apply to early successional stages of these forests.
ISSN:1872-8855
1872-8847
DOI:10.1007/s11829-011-9160-5