Loading…

Effective TDMA scheduling for tree-based data collection using genetic algorithm in wireless sensor networks

Data collection is a major operation in Wireless Sensor Networks (WSNs) and minimizing the delay in transmitting the collected data is critical for a lot of applications where specific actions depend on the required deadline, such as event-based mission-critical applications. Scheduling algorithms s...

Full description

Saved in:
Bibliographic Details
Published in:Peer-to-peer networking and applications 2020-05, Vol.13 (3), p.796-815
Main Authors: Osamy, Walid, El-Sawy, Ahmed A., Khedr, Ahmed M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3
cites cdi_FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3
container_end_page 815
container_issue 3
container_start_page 796
container_title Peer-to-peer networking and applications
container_volume 13
creator Osamy, Walid
El-Sawy, Ahmed A.
Khedr, Ahmed M.
description Data collection is a major operation in Wireless Sensor Networks (WSNs) and minimizing the delay in transmitting the collected data is critical for a lot of applications where specific actions depend on the required deadline, such as event-based mission-critical applications. Scheduling algorithms such as Time Division Multiple Access (TDMA) are extensively used for data delivery with the aim of minimizing the time duration for transporting data to the sink. To minimize the average latency and the average normalized latency in TDMA, we propose a new efficient scheduling algorithm (ETDMA-GA) based on Genetic Algorithm(GA). ETDMA-GA minimizes the latency of communication where two dimensional encoding representations are designed to allocate slots and minimizes the total network latency using a proposed fitness function. The simulation results show that the performance of the proposed algorithm outperforms the existing state-of-the-art approaches such as Rand-LO, Depth-LO, DepthRe-LO, IDegRe-LO, and IDeg-LO in terms of average latency, average normalized latency, and average schedule length.
doi_str_mv 10.1007/s12083-019-00818-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2402323437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402323437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6wssQ6MH3l4WZXykIrYlLXlOOM0JU2KnYDo1-MSBDtWM4tz72hOFF1SuKYA2Y2nDHIeA5UxQE7zeH8UTajkaZyKBI5_d8FOozPvNwAp5QmbRM3CWjR9_Y5kdfs0I96ssRyauq2I7RzpHWJcaI8lKXWviema5oB3LRn8Aaqwxb42RDdV5-p-vSV1Sz5qhw16Tzy2PrQE5KNzr_48OrG68XjxM6fRy91iNX-Il8_3j_PZMjacyj7OZZbqtJQWcpBUWInhI54mmpdWJIXJuCyyPANO08QisjKXYKjRGoTgAgs-ja7G3p3r3gb0vdp0g2vDScUEMM644Fmg2EgZ13nv0Kqdq7fafSoK6mBVjVZVsKq-rap9CPEx5APcVuj-qv9JfQGkb3vr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402323437</pqid></control><display><type>article</type><title>Effective TDMA scheduling for tree-based data collection using genetic algorithm in wireless sensor networks</title><source>Springer Nature</source><creator>Osamy, Walid ; El-Sawy, Ahmed A. ; Khedr, Ahmed M.</creator><creatorcontrib>Osamy, Walid ; El-Sawy, Ahmed A. ; Khedr, Ahmed M.</creatorcontrib><description>Data collection is a major operation in Wireless Sensor Networks (WSNs) and minimizing the delay in transmitting the collected data is critical for a lot of applications where specific actions depend on the required deadline, such as event-based mission-critical applications. Scheduling algorithms such as Time Division Multiple Access (TDMA) are extensively used for data delivery with the aim of minimizing the time duration for transporting data to the sink. To minimize the average latency and the average normalized latency in TDMA, we propose a new efficient scheduling algorithm (ETDMA-GA) based on Genetic Algorithm(GA). ETDMA-GA minimizes the latency of communication where two dimensional encoding representations are designed to allocate slots and minimizes the total network latency using a proposed fitness function. The simulation results show that the performance of the proposed algorithm outperforms the existing state-of-the-art approaches such as Rand-LO, Depth-LO, DepthRe-LO, IDegRe-LO, and IDeg-LO in terms of average latency, average normalized latency, and average schedule length.</description><identifier>ISSN: 1936-6442</identifier><identifier>EISSN: 1936-6450</identifier><identifier>DOI: 10.1007/s12083-019-00818-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Communications Engineering ; Computer Communication Networks ; Computer simulation ; Data collection ; Engineering ; Genetic algorithms ; Information Systems and Communication Service ; Network latency ; Networks ; Schedules ; Scheduling ; Signal,Image and Speech Processing ; Time Division Multiple Access ; Wireless networks ; Wireless sensor networks</subject><ispartof>Peer-to-peer networking and applications, 2020-05, Vol.13 (3), p.796-815</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3</citedby><cites>FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3</cites><orcidid>0000-0001-6911-4346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Osamy, Walid</creatorcontrib><creatorcontrib>El-Sawy, Ahmed A.</creatorcontrib><creatorcontrib>Khedr, Ahmed M.</creatorcontrib><title>Effective TDMA scheduling for tree-based data collection using genetic algorithm in wireless sensor networks</title><title>Peer-to-peer networking and applications</title><addtitle>Peer-to-Peer Netw. Appl</addtitle><description>Data collection is a major operation in Wireless Sensor Networks (WSNs) and minimizing the delay in transmitting the collected data is critical for a lot of applications where specific actions depend on the required deadline, such as event-based mission-critical applications. Scheduling algorithms such as Time Division Multiple Access (TDMA) are extensively used for data delivery with the aim of minimizing the time duration for transporting data to the sink. To minimize the average latency and the average normalized latency in TDMA, we propose a new efficient scheduling algorithm (ETDMA-GA) based on Genetic Algorithm(GA). ETDMA-GA minimizes the latency of communication where two dimensional encoding representations are designed to allocate slots and minimizes the total network latency using a proposed fitness function. The simulation results show that the performance of the proposed algorithm outperforms the existing state-of-the-art approaches such as Rand-LO, Depth-LO, DepthRe-LO, IDegRe-LO, and IDeg-LO in terms of average latency, average normalized latency, and average schedule length.</description><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Computer simulation</subject><subject>Data collection</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Information Systems and Communication Service</subject><subject>Network latency</subject><subject>Networks</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Signal,Image and Speech Processing</subject><subject>Time Division Multiple Access</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1936-6442</issn><issn>1936-6450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwA6wssQ6MH3l4WZXykIrYlLXlOOM0JU2KnYDo1-MSBDtWM4tz72hOFF1SuKYA2Y2nDHIeA5UxQE7zeH8UTajkaZyKBI5_d8FOozPvNwAp5QmbRM3CWjR9_Y5kdfs0I96ssRyauq2I7RzpHWJcaI8lKXWviema5oB3LRn8Aaqwxb42RDdV5-p-vSV1Sz5qhw16Tzy2PrQE5KNzr_48OrG68XjxM6fRy91iNX-Il8_3j_PZMjacyj7OZZbqtJQWcpBUWInhI54mmpdWJIXJuCyyPANO08QisjKXYKjRGoTgAgs-ja7G3p3r3gb0vdp0g2vDScUEMM644Fmg2EgZ13nv0Kqdq7fafSoK6mBVjVZVsKq-rap9CPEx5APcVuj-qv9JfQGkb3vr</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Osamy, Walid</creator><creator>El-Sawy, Ahmed A.</creator><creator>Khedr, Ahmed M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6911-4346</orcidid></search><sort><creationdate>20200501</creationdate><title>Effective TDMA scheduling for tree-based data collection using genetic algorithm in wireless sensor networks</title><author>Osamy, Walid ; El-Sawy, Ahmed A. ; Khedr, Ahmed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Computer simulation</topic><topic>Data collection</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Information Systems and Communication Service</topic><topic>Network latency</topic><topic>Networks</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Signal,Image and Speech Processing</topic><topic>Time Division Multiple Access</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osamy, Walid</creatorcontrib><creatorcontrib>El-Sawy, Ahmed A.</creatorcontrib><creatorcontrib>Khedr, Ahmed M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Proquest Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Peer-to-peer networking and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osamy, Walid</au><au>El-Sawy, Ahmed A.</au><au>Khedr, Ahmed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective TDMA scheduling for tree-based data collection using genetic algorithm in wireless sensor networks</atitle><jtitle>Peer-to-peer networking and applications</jtitle><stitle>Peer-to-Peer Netw. Appl</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>13</volume><issue>3</issue><spage>796</spage><epage>815</epage><pages>796-815</pages><issn>1936-6442</issn><eissn>1936-6450</eissn><abstract>Data collection is a major operation in Wireless Sensor Networks (WSNs) and minimizing the delay in transmitting the collected data is critical for a lot of applications where specific actions depend on the required deadline, such as event-based mission-critical applications. Scheduling algorithms such as Time Division Multiple Access (TDMA) are extensively used for data delivery with the aim of minimizing the time duration for transporting data to the sink. To minimize the average latency and the average normalized latency in TDMA, we propose a new efficient scheduling algorithm (ETDMA-GA) based on Genetic Algorithm(GA). ETDMA-GA minimizes the latency of communication where two dimensional encoding representations are designed to allocate slots and minimizes the total network latency using a proposed fitness function. The simulation results show that the performance of the proposed algorithm outperforms the existing state-of-the-art approaches such as Rand-LO, Depth-LO, DepthRe-LO, IDegRe-LO, and IDeg-LO in terms of average latency, average normalized latency, and average schedule length.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12083-019-00818-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6911-4346</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-6442
ispartof Peer-to-peer networking and applications, 2020-05, Vol.13 (3), p.796-815
issn 1936-6442
1936-6450
language eng
recordid cdi_proquest_journals_2402323437
source Springer Nature
subjects Communications Engineering
Computer Communication Networks
Computer simulation
Data collection
Engineering
Genetic algorithms
Information Systems and Communication Service
Network latency
Networks
Schedules
Scheduling
Signal,Image and Speech Processing
Time Division Multiple Access
Wireless networks
Wireless sensor networks
title Effective TDMA scheduling for tree-based data collection using genetic algorithm in wireless sensor networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20TDMA%20scheduling%20for%20tree-based%20data%20collection%20using%20genetic%20algorithm%20in%20wireless%20sensor%20networks&rft.jtitle=Peer-to-peer%20networking%20and%20applications&rft.au=Osamy,%20Walid&rft.date=2020-05-01&rft.volume=13&rft.issue=3&rft.spage=796&rft.epage=815&rft.pages=796-815&rft.issn=1936-6442&rft.eissn=1936-6450&rft_id=info:doi/10.1007/s12083-019-00818-z&rft_dat=%3Cproquest_cross%3E2402323437%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2402323437&rft_id=info:pmid/&rfr_iscdi=true