Loading…
Effective TDMA scheduling for tree-based data collection using genetic algorithm in wireless sensor networks
Data collection is a major operation in Wireless Sensor Networks (WSNs) and minimizing the delay in transmitting the collected data is critical for a lot of applications where specific actions depend on the required deadline, such as event-based mission-critical applications. Scheduling algorithms s...
Saved in:
Published in: | Peer-to-peer networking and applications 2020-05, Vol.13 (3), p.796-815 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3 |
container_end_page | 815 |
container_issue | 3 |
container_start_page | 796 |
container_title | Peer-to-peer networking and applications |
container_volume | 13 |
creator | Osamy, Walid El-Sawy, Ahmed A. Khedr, Ahmed M. |
description | Data collection is a major operation in Wireless Sensor Networks (WSNs) and minimizing the delay in transmitting the collected data is critical for a lot of applications where specific actions depend on the required deadline, such as event-based mission-critical applications. Scheduling algorithms such as Time Division Multiple Access (TDMA) are extensively used for data delivery with the aim of minimizing the time duration for transporting data to the sink. To minimize the average latency and the average normalized latency in TDMA, we propose a new efficient scheduling algorithm (ETDMA-GA) based on Genetic Algorithm(GA). ETDMA-GA minimizes the latency of communication where two dimensional encoding representations are designed to allocate slots and minimizes the total network latency using a proposed fitness function. The simulation results show that the performance of the proposed algorithm outperforms the existing state-of-the-art approaches such as Rand-LO, Depth-LO, DepthRe-LO, IDegRe-LO, and IDeg-LO in terms of average latency, average normalized latency, and average schedule length. |
doi_str_mv | 10.1007/s12083-019-00818-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2402323437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402323437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6wssQ6MH3l4WZXykIrYlLXlOOM0JU2KnYDo1-MSBDtWM4tz72hOFF1SuKYA2Y2nDHIeA5UxQE7zeH8UTajkaZyKBI5_d8FOozPvNwAp5QmbRM3CWjR9_Y5kdfs0I96ssRyauq2I7RzpHWJcaI8lKXWviema5oB3LRn8Aaqwxb42RDdV5-p-vSV1Sz5qhw16Tzy2PrQE5KNzr_48OrG68XjxM6fRy91iNX-Il8_3j_PZMjacyj7OZZbqtJQWcpBUWInhI54mmpdWJIXJuCyyPANO08QisjKXYKjRGoTgAgs-ja7G3p3r3gb0vdp0g2vDScUEMM644Fmg2EgZ13nv0Kqdq7fafSoK6mBVjVZVsKq-rap9CPEx5APcVuj-qv9JfQGkb3vr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402323437</pqid></control><display><type>article</type><title>Effective TDMA scheduling for tree-based data collection using genetic algorithm in wireless sensor networks</title><source>Springer Nature</source><creator>Osamy, Walid ; El-Sawy, Ahmed A. ; Khedr, Ahmed M.</creator><creatorcontrib>Osamy, Walid ; El-Sawy, Ahmed A. ; Khedr, Ahmed M.</creatorcontrib><description>Data collection is a major operation in Wireless Sensor Networks (WSNs) and minimizing the delay in transmitting the collected data is critical for a lot of applications where specific actions depend on the required deadline, such as event-based mission-critical applications. Scheduling algorithms such as Time Division Multiple Access (TDMA) are extensively used for data delivery with the aim of minimizing the time duration for transporting data to the sink. To minimize the average latency and the average normalized latency in TDMA, we propose a new efficient scheduling algorithm (ETDMA-GA) based on Genetic Algorithm(GA). ETDMA-GA minimizes the latency of communication where two dimensional encoding representations are designed to allocate slots and minimizes the total network latency using a proposed fitness function. The simulation results show that the performance of the proposed algorithm outperforms the existing state-of-the-art approaches such as Rand-LO, Depth-LO, DepthRe-LO, IDegRe-LO, and IDeg-LO in terms of average latency, average normalized latency, and average schedule length.</description><identifier>ISSN: 1936-6442</identifier><identifier>EISSN: 1936-6450</identifier><identifier>DOI: 10.1007/s12083-019-00818-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Communications Engineering ; Computer Communication Networks ; Computer simulation ; Data collection ; Engineering ; Genetic algorithms ; Information Systems and Communication Service ; Network latency ; Networks ; Schedules ; Scheduling ; Signal,Image and Speech Processing ; Time Division Multiple Access ; Wireless networks ; Wireless sensor networks</subject><ispartof>Peer-to-peer networking and applications, 2020-05, Vol.13 (3), p.796-815</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3</citedby><cites>FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3</cites><orcidid>0000-0001-6911-4346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Osamy, Walid</creatorcontrib><creatorcontrib>El-Sawy, Ahmed A.</creatorcontrib><creatorcontrib>Khedr, Ahmed M.</creatorcontrib><title>Effective TDMA scheduling for tree-based data collection using genetic algorithm in wireless sensor networks</title><title>Peer-to-peer networking and applications</title><addtitle>Peer-to-Peer Netw. Appl</addtitle><description>Data collection is a major operation in Wireless Sensor Networks (WSNs) and minimizing the delay in transmitting the collected data is critical for a lot of applications where specific actions depend on the required deadline, such as event-based mission-critical applications. Scheduling algorithms such as Time Division Multiple Access (TDMA) are extensively used for data delivery with the aim of minimizing the time duration for transporting data to the sink. To minimize the average latency and the average normalized latency in TDMA, we propose a new efficient scheduling algorithm (ETDMA-GA) based on Genetic Algorithm(GA). ETDMA-GA minimizes the latency of communication where two dimensional encoding representations are designed to allocate slots and minimizes the total network latency using a proposed fitness function. The simulation results show that the performance of the proposed algorithm outperforms the existing state-of-the-art approaches such as Rand-LO, Depth-LO, DepthRe-LO, IDegRe-LO, and IDeg-LO in terms of average latency, average normalized latency, and average schedule length.</description><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Computer simulation</subject><subject>Data collection</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Information Systems and Communication Service</subject><subject>Network latency</subject><subject>Networks</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Signal,Image and Speech Processing</subject><subject>Time Division Multiple Access</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1936-6442</issn><issn>1936-6450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwA6wssQ6MH3l4WZXykIrYlLXlOOM0JU2KnYDo1-MSBDtWM4tz72hOFF1SuKYA2Y2nDHIeA5UxQE7zeH8UTajkaZyKBI5_d8FOozPvNwAp5QmbRM3CWjR9_Y5kdfs0I96ssRyauq2I7RzpHWJcaI8lKXWviema5oB3LRn8Aaqwxb42RDdV5-p-vSV1Sz5qhw16Tzy2PrQE5KNzr_48OrG68XjxM6fRy91iNX-Il8_3j_PZMjacyj7OZZbqtJQWcpBUWInhI54mmpdWJIXJuCyyPANO08QisjKXYKjRGoTgAgs-ja7G3p3r3gb0vdp0g2vDScUEMM644Fmg2EgZ13nv0Kqdq7fafSoK6mBVjVZVsKq-rap9CPEx5APcVuj-qv9JfQGkb3vr</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Osamy, Walid</creator><creator>El-Sawy, Ahmed A.</creator><creator>Khedr, Ahmed M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6911-4346</orcidid></search><sort><creationdate>20200501</creationdate><title>Effective TDMA scheduling for tree-based data collection using genetic algorithm in wireless sensor networks</title><author>Osamy, Walid ; El-Sawy, Ahmed A. ; Khedr, Ahmed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Computer simulation</topic><topic>Data collection</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Information Systems and Communication Service</topic><topic>Network latency</topic><topic>Networks</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Signal,Image and Speech Processing</topic><topic>Time Division Multiple Access</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osamy, Walid</creatorcontrib><creatorcontrib>El-Sawy, Ahmed A.</creatorcontrib><creatorcontrib>Khedr, Ahmed M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Proquest Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Peer-to-peer networking and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osamy, Walid</au><au>El-Sawy, Ahmed A.</au><au>Khedr, Ahmed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective TDMA scheduling for tree-based data collection using genetic algorithm in wireless sensor networks</atitle><jtitle>Peer-to-peer networking and applications</jtitle><stitle>Peer-to-Peer Netw. Appl</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>13</volume><issue>3</issue><spage>796</spage><epage>815</epage><pages>796-815</pages><issn>1936-6442</issn><eissn>1936-6450</eissn><abstract>Data collection is a major operation in Wireless Sensor Networks (WSNs) and minimizing the delay in transmitting the collected data is critical for a lot of applications where specific actions depend on the required deadline, such as event-based mission-critical applications. Scheduling algorithms such as Time Division Multiple Access (TDMA) are extensively used for data delivery with the aim of minimizing the time duration for transporting data to the sink. To minimize the average latency and the average normalized latency in TDMA, we propose a new efficient scheduling algorithm (ETDMA-GA) based on Genetic Algorithm(GA). ETDMA-GA minimizes the latency of communication where two dimensional encoding representations are designed to allocate slots and minimizes the total network latency using a proposed fitness function. The simulation results show that the performance of the proposed algorithm outperforms the existing state-of-the-art approaches such as Rand-LO, Depth-LO, DepthRe-LO, IDegRe-LO, and IDeg-LO in terms of average latency, average normalized latency, and average schedule length.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12083-019-00818-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6911-4346</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-6442 |
ispartof | Peer-to-peer networking and applications, 2020-05, Vol.13 (3), p.796-815 |
issn | 1936-6442 1936-6450 |
language | eng |
recordid | cdi_proquest_journals_2402323437 |
source | Springer Nature |
subjects | Communications Engineering Computer Communication Networks Computer simulation Data collection Engineering Genetic algorithms Information Systems and Communication Service Network latency Networks Schedules Scheduling Signal,Image and Speech Processing Time Division Multiple Access Wireless networks Wireless sensor networks |
title | Effective TDMA scheduling for tree-based data collection using genetic algorithm in wireless sensor networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20TDMA%20scheduling%20for%20tree-based%20data%20collection%20using%20genetic%20algorithm%20in%20wireless%20sensor%20networks&rft.jtitle=Peer-to-peer%20networking%20and%20applications&rft.au=Osamy,%20Walid&rft.date=2020-05-01&rft.volume=13&rft.issue=3&rft.spage=796&rft.epage=815&rft.pages=796-815&rft.issn=1936-6442&rft.eissn=1936-6450&rft_id=info:doi/10.1007/s12083-019-00818-z&rft_dat=%3Cproquest_cross%3E2402323437%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8976a6d9f080914f9e818365a3df45bc739b78703165fee2d890c1caa04434eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2402323437&rft_id=info:pmid/&rfr_iscdi=true |