Loading…
Effect of Particle Shape on Constitutive Relation: DEM Study
AbstractThe influence of particle shape was evaluated under drained and undrained (constant volume) condition using three-dimensional (3D) cubical assemblies of spheres, ellipsoids, and cluster of spheres (a combination of seven spheres with two different degrees of overlap) with same particle size...
Saved in:
Published in: | Journal of geotechnical and geoenvironmental engineering 2020-07, Vol.146 (7) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | AbstractThe influence of particle shape was evaluated under drained and undrained (constant volume) condition using three-dimensional (3D) cubical assemblies of spheres, ellipsoids, and cluster of spheres (a combination of seven spheres with two different degrees of overlap) with same particle size distribution. It was found that the peak deviatoric stress, the minimum dilatancy (d=dεvp/dεqp), corresponding stress ratio (ηdmin), the bounding surface dilatancy model, and the location of the critical state line (CSL) both in the e-log(p′) and the q-p′ space were influenced by particle shape. Therefore, four corresponding sets of constitutive parameters for four different particle shapes were implemented in a bounding surface model to predict both drained and undrained (constant volume) discrete element method (DEM) simulation. Good prediction, irrespective of particle shape, indicates that the observed DEM behavior can be adequately captured by the theories of continuum mechanics. Importantly, the majority of the constitutive parameters were influenced by particle shape and can be correlated with simple shape descriptor of sphericity. |
---|---|
ISSN: | 1090-0241 1943-5606 |
DOI: | 10.1061/(ASCE)GT.1943-5606.0002278 |