Loading…

On a class of isomorphic NFSRs

Two nonlinear feedback shift registers (NFSRs) of the same stage number are called isomorphic if their state diagrams are of the same cycle structure. In this paper, we focus on a class of isomorphic NFSRs that are derived from a previous work (Zhao et al. in Des Codes Cryptogr 86(12):2775–2790, 201...

Full description

Saved in:
Bibliographic Details
Published in:Designs, codes, and cryptography codes, and cryptography, 2020-06, Vol.88 (6), p.1205-1226
Main Authors: Zhao, Xiao-Xin, Zheng, Qun-Xiong, Wang, Zhong-Xiao, Qi, Wen-Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-acb63a6f83bd8b4b4c2eb5e83e0ac9793f0d737209965c350a239913fff5a49a3
container_end_page 1226
container_issue 6
container_start_page 1205
container_title Designs, codes, and cryptography
container_volume 88
creator Zhao, Xiao-Xin
Zheng, Qun-Xiong
Wang, Zhong-Xiao
Qi, Wen-Feng
description Two nonlinear feedback shift registers (NFSRs) of the same stage number are called isomorphic if their state diagrams are of the same cycle structure. In this paper, we focus on a class of isomorphic NFSRs that are derived from a previous work (Zhao et al. in Des Codes Cryptogr 86(12):2775–2790, 2018). First, we give an explicit formula for counting this class of isomorphic NFSRs, which generalizes the previous result given by Rozhkov (Discret Math Appl 20(2):127–155, 2010). Then we study the inherent relation of the affine sub-families among these NFSRs. The obtained result shows that the analysis of the affine sub-families of these NFSRs could be reduced to the analysis of the affine sub-families of a specific NFSR. Finally, we present a Galois representation of some specific isomorphic NFSRs whose periods of the output sequences are controllable.
doi_str_mv 10.1007/s10623-020-00742-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2402505529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402505529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-acb63a6f83bd8b4b4c2eb5e83e0ac9793f0d737209965c350a239913fff5a49a3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoWKd_wAspeB09OadpmksZToXhwI_rkGaJdmxtTTaY_95qBe-8OrzwPu-Bh7FzAVcCQF0nASUSBwQ-xAL5_oBlQiriSlblIctAo-QCEI_ZSUorABAEmLGLRZvb3K1tSnkX8iZ1my72743LH2fPT-mUHQW7Tv7s907Y6-z2ZXrP54u7h-nNnDtUsOXW1SXZMlRUL6u6qAuHvpa-Ig_WaaUpwFKRQtC6lI4kWCStBYUQpC20pQm7HHf72H3sfNqaVbeL7fDSYAEoQUrUQwvHlotdStEH08dmY-OnEWC-PZjRgxk8mB8PZj9ANEJpKLdvPv5N_0N9Aer1XhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402505529</pqid></control><display><type>article</type><title>On a class of isomorphic NFSRs</title><source>Springer Link</source><creator>Zhao, Xiao-Xin ; Zheng, Qun-Xiong ; Wang, Zhong-Xiao ; Qi, Wen-Feng</creator><creatorcontrib>Zhao, Xiao-Xin ; Zheng, Qun-Xiong ; Wang, Zhong-Xiao ; Qi, Wen-Feng</creatorcontrib><description>Two nonlinear feedback shift registers (NFSRs) of the same stage number are called isomorphic if their state diagrams are of the same cycle structure. In this paper, we focus on a class of isomorphic NFSRs that are derived from a previous work (Zhao et al. in Des Codes Cryptogr 86(12):2775–2790, 2018). First, we give an explicit formula for counting this class of isomorphic NFSRs, which generalizes the previous result given by Rozhkov (Discret Math Appl 20(2):127–155, 2010). Then we study the inherent relation of the affine sub-families among these NFSRs. The obtained result shows that the analysis of the affine sub-families of these NFSRs could be reduced to the analysis of the affine sub-families of a specific NFSR. Finally, we present a Galois representation of some specific isomorphic NFSRs whose periods of the output sequences are controllable.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-020-00742-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coding and Information Theory ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Nonlinear feedback ; Shift registers ; State (computer science)</subject><ispartof>Designs, codes, and cryptography, 2020-06, Vol.88 (6), p.1205-1226</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-acb63a6f83bd8b4b4c2eb5e83e0ac9793f0d737209965c350a239913fff5a49a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Xiao-Xin</creatorcontrib><creatorcontrib>Zheng, Qun-Xiong</creatorcontrib><creatorcontrib>Wang, Zhong-Xiao</creatorcontrib><creatorcontrib>Qi, Wen-Feng</creatorcontrib><title>On a class of isomorphic NFSRs</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Two nonlinear feedback shift registers (NFSRs) of the same stage number are called isomorphic if their state diagrams are of the same cycle structure. In this paper, we focus on a class of isomorphic NFSRs that are derived from a previous work (Zhao et al. in Des Codes Cryptogr 86(12):2775–2790, 2018). First, we give an explicit formula for counting this class of isomorphic NFSRs, which generalizes the previous result given by Rozhkov (Discret Math Appl 20(2):127–155, 2010). Then we study the inherent relation of the affine sub-families among these NFSRs. The obtained result shows that the analysis of the affine sub-families of these NFSRs could be reduced to the analysis of the affine sub-families of a specific NFSR. Finally, we present a Galois representation of some specific isomorphic NFSRs whose periods of the output sequences are controllable.</description><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Nonlinear feedback</subject><subject>Shift registers</subject><subject>State (computer science)</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoWKd_wAspeB09OadpmksZToXhwI_rkGaJdmxtTTaY_95qBe-8OrzwPu-Bh7FzAVcCQF0nASUSBwQ-xAL5_oBlQiriSlblIctAo-QCEI_ZSUorABAEmLGLRZvb3K1tSnkX8iZ1my72743LH2fPT-mUHQW7Tv7s907Y6-z2ZXrP54u7h-nNnDtUsOXW1SXZMlRUL6u6qAuHvpa-Ig_WaaUpwFKRQtC6lI4kWCStBYUQpC20pQm7HHf72H3sfNqaVbeL7fDSYAEoQUrUQwvHlotdStEH08dmY-OnEWC-PZjRgxk8mB8PZj9ANEJpKLdvPv5N_0N9Aer1XhE</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Zhao, Xiao-Xin</creator><creator>Zheng, Qun-Xiong</creator><creator>Wang, Zhong-Xiao</creator><creator>Qi, Wen-Feng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200601</creationdate><title>On a class of isomorphic NFSRs</title><author>Zhao, Xiao-Xin ; Zheng, Qun-Xiong ; Wang, Zhong-Xiao ; Qi, Wen-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-acb63a6f83bd8b4b4c2eb5e83e0ac9793f0d737209965c350a239913fff5a49a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Nonlinear feedback</topic><topic>Shift registers</topic><topic>State (computer science)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xiao-Xin</creatorcontrib><creatorcontrib>Zheng, Qun-Xiong</creatorcontrib><creatorcontrib>Wang, Zhong-Xiao</creatorcontrib><creatorcontrib>Qi, Wen-Feng</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xiao-Xin</au><au>Zheng, Qun-Xiong</au><au>Wang, Zhong-Xiao</au><au>Qi, Wen-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a class of isomorphic NFSRs</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>88</volume><issue>6</issue><spage>1205</spage><epage>1226</epage><pages>1205-1226</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Two nonlinear feedback shift registers (NFSRs) of the same stage number are called isomorphic if their state diagrams are of the same cycle structure. In this paper, we focus on a class of isomorphic NFSRs that are derived from a previous work (Zhao et al. in Des Codes Cryptogr 86(12):2775–2790, 2018). First, we give an explicit formula for counting this class of isomorphic NFSRs, which generalizes the previous result given by Rozhkov (Discret Math Appl 20(2):127–155, 2010). Then we study the inherent relation of the affine sub-families among these NFSRs. The obtained result shows that the analysis of the affine sub-families of these NFSRs could be reduced to the analysis of the affine sub-families of a specific NFSR. Finally, we present a Galois representation of some specific isomorphic NFSRs whose periods of the output sequences are controllable.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-020-00742-x</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2020-06, Vol.88 (6), p.1205-1226
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_2402505529
source Springer Link
subjects Coding and Information Theory
Computer Science
Cryptology
Discrete Mathematics in Computer Science
Nonlinear feedback
Shift registers
State (computer science)
title On a class of isomorphic NFSRs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20class%20of%20isomorphic%20NFSRs&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Zhao,%20Xiao-Xin&rft.date=2020-06-01&rft.volume=88&rft.issue=6&rft.spage=1205&rft.epage=1226&rft.pages=1205-1226&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-020-00742-x&rft_dat=%3Cproquest_cross%3E2402505529%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-acb63a6f83bd8b4b4c2eb5e83e0ac9793f0d737209965c350a239913fff5a49a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2402505529&rft_id=info:pmid/&rfr_iscdi=true