Loading…
On a class of isomorphic NFSRs
Two nonlinear feedback shift registers (NFSRs) of the same stage number are called isomorphic if their state diagrams are of the same cycle structure. In this paper, we focus on a class of isomorphic NFSRs that are derived from a previous work (Zhao et al. in Des Codes Cryptogr 86(12):2775–2790, 201...
Saved in:
Published in: | Designs, codes, and cryptography codes, and cryptography, 2020-06, Vol.88 (6), p.1205-1226 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-acb63a6f83bd8b4b4c2eb5e83e0ac9793f0d737209965c350a239913fff5a49a3 |
container_end_page | 1226 |
container_issue | 6 |
container_start_page | 1205 |
container_title | Designs, codes, and cryptography |
container_volume | 88 |
creator | Zhao, Xiao-Xin Zheng, Qun-Xiong Wang, Zhong-Xiao Qi, Wen-Feng |
description | Two nonlinear feedback shift registers (NFSRs) of the same stage number are called isomorphic if their state diagrams are of the same cycle structure. In this paper, we focus on a class of isomorphic NFSRs that are derived from a previous work (Zhao et al. in Des Codes Cryptogr 86(12):2775–2790, 2018). First, we give an explicit formula for counting this class of isomorphic NFSRs, which generalizes the previous result given by Rozhkov (Discret Math Appl 20(2):127–155, 2010). Then we study the inherent relation of the affine sub-families among these NFSRs. The obtained result shows that the analysis of the affine sub-families of these NFSRs could be reduced to the analysis of the affine sub-families of a specific NFSR. Finally, we present a Galois representation of some specific isomorphic NFSRs whose periods of the output sequences are controllable. |
doi_str_mv | 10.1007/s10623-020-00742-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2402505529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402505529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-acb63a6f83bd8b4b4c2eb5e83e0ac9793f0d737209965c350a239913fff5a49a3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoWKd_wAspeB09OadpmksZToXhwI_rkGaJdmxtTTaY_95qBe-8OrzwPu-Bh7FzAVcCQF0nASUSBwQ-xAL5_oBlQiriSlblIctAo-QCEI_ZSUorABAEmLGLRZvb3K1tSnkX8iZ1my72743LH2fPT-mUHQW7Tv7s907Y6-z2ZXrP54u7h-nNnDtUsOXW1SXZMlRUL6u6qAuHvpa-Ig_WaaUpwFKRQtC6lI4kWCStBYUQpC20pQm7HHf72H3sfNqaVbeL7fDSYAEoQUrUQwvHlotdStEH08dmY-OnEWC-PZjRgxk8mB8PZj9ANEJpKLdvPv5N_0N9Aer1XhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402505529</pqid></control><display><type>article</type><title>On a class of isomorphic NFSRs</title><source>Springer Link</source><creator>Zhao, Xiao-Xin ; Zheng, Qun-Xiong ; Wang, Zhong-Xiao ; Qi, Wen-Feng</creator><creatorcontrib>Zhao, Xiao-Xin ; Zheng, Qun-Xiong ; Wang, Zhong-Xiao ; Qi, Wen-Feng</creatorcontrib><description>Two nonlinear feedback shift registers (NFSRs) of the same stage number are called isomorphic if their state diagrams are of the same cycle structure. In this paper, we focus on a class of isomorphic NFSRs that are derived from a previous work (Zhao et al. in Des Codes Cryptogr 86(12):2775–2790, 2018). First, we give an explicit formula for counting this class of isomorphic NFSRs, which generalizes the previous result given by Rozhkov (Discret Math Appl 20(2):127–155, 2010). Then we study the inherent relation of the affine sub-families among these NFSRs. The obtained result shows that the analysis of the affine sub-families of these NFSRs could be reduced to the analysis of the affine sub-families of a specific NFSR. Finally, we present a Galois representation of some specific isomorphic NFSRs whose periods of the output sequences are controllable.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-020-00742-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coding and Information Theory ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Nonlinear feedback ; Shift registers ; State (computer science)</subject><ispartof>Designs, codes, and cryptography, 2020-06, Vol.88 (6), p.1205-1226</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-acb63a6f83bd8b4b4c2eb5e83e0ac9793f0d737209965c350a239913fff5a49a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Xiao-Xin</creatorcontrib><creatorcontrib>Zheng, Qun-Xiong</creatorcontrib><creatorcontrib>Wang, Zhong-Xiao</creatorcontrib><creatorcontrib>Qi, Wen-Feng</creatorcontrib><title>On a class of isomorphic NFSRs</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Two nonlinear feedback shift registers (NFSRs) of the same stage number are called isomorphic if their state diagrams are of the same cycle structure. In this paper, we focus on a class of isomorphic NFSRs that are derived from a previous work (Zhao et al. in Des Codes Cryptogr 86(12):2775–2790, 2018). First, we give an explicit formula for counting this class of isomorphic NFSRs, which generalizes the previous result given by Rozhkov (Discret Math Appl 20(2):127–155, 2010). Then we study the inherent relation of the affine sub-families among these NFSRs. The obtained result shows that the analysis of the affine sub-families of these NFSRs could be reduced to the analysis of the affine sub-families of a specific NFSR. Finally, we present a Galois representation of some specific isomorphic NFSRs whose periods of the output sequences are controllable.</description><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Nonlinear feedback</subject><subject>Shift registers</subject><subject>State (computer science)</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoWKd_wAspeB09OadpmksZToXhwI_rkGaJdmxtTTaY_95qBe-8OrzwPu-Bh7FzAVcCQF0nASUSBwQ-xAL5_oBlQiriSlblIctAo-QCEI_ZSUorABAEmLGLRZvb3K1tSnkX8iZ1my72743LH2fPT-mUHQW7Tv7s907Y6-z2ZXrP54u7h-nNnDtUsOXW1SXZMlRUL6u6qAuHvpa-Ig_WaaUpwFKRQtC6lI4kWCStBYUQpC20pQm7HHf72H3sfNqaVbeL7fDSYAEoQUrUQwvHlotdStEH08dmY-OnEWC-PZjRgxk8mB8PZj9ANEJpKLdvPv5N_0N9Aer1XhE</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Zhao, Xiao-Xin</creator><creator>Zheng, Qun-Xiong</creator><creator>Wang, Zhong-Xiao</creator><creator>Qi, Wen-Feng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200601</creationdate><title>On a class of isomorphic NFSRs</title><author>Zhao, Xiao-Xin ; Zheng, Qun-Xiong ; Wang, Zhong-Xiao ; Qi, Wen-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-acb63a6f83bd8b4b4c2eb5e83e0ac9793f0d737209965c350a239913fff5a49a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Nonlinear feedback</topic><topic>Shift registers</topic><topic>State (computer science)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xiao-Xin</creatorcontrib><creatorcontrib>Zheng, Qun-Xiong</creatorcontrib><creatorcontrib>Wang, Zhong-Xiao</creatorcontrib><creatorcontrib>Qi, Wen-Feng</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xiao-Xin</au><au>Zheng, Qun-Xiong</au><au>Wang, Zhong-Xiao</au><au>Qi, Wen-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a class of isomorphic NFSRs</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>88</volume><issue>6</issue><spage>1205</spage><epage>1226</epage><pages>1205-1226</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Two nonlinear feedback shift registers (NFSRs) of the same stage number are called isomorphic if their state diagrams are of the same cycle structure. In this paper, we focus on a class of isomorphic NFSRs that are derived from a previous work (Zhao et al. in Des Codes Cryptogr 86(12):2775–2790, 2018). First, we give an explicit formula for counting this class of isomorphic NFSRs, which generalizes the previous result given by Rozhkov (Discret Math Appl 20(2):127–155, 2010). Then we study the inherent relation of the affine sub-families among these NFSRs. The obtained result shows that the analysis of the affine sub-families of these NFSRs could be reduced to the analysis of the affine sub-families of a specific NFSR. Finally, we present a Galois representation of some specific isomorphic NFSRs whose periods of the output sequences are controllable.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-020-00742-x</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-1022 |
ispartof | Designs, codes, and cryptography, 2020-06, Vol.88 (6), p.1205-1226 |
issn | 0925-1022 1573-7586 |
language | eng |
recordid | cdi_proquest_journals_2402505529 |
source | Springer Link |
subjects | Coding and Information Theory Computer Science Cryptology Discrete Mathematics in Computer Science Nonlinear feedback Shift registers State (computer science) |
title | On a class of isomorphic NFSRs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20class%20of%20isomorphic%20NFSRs&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Zhao,%20Xiao-Xin&rft.date=2020-06-01&rft.volume=88&rft.issue=6&rft.spage=1205&rft.epage=1226&rft.pages=1205-1226&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-020-00742-x&rft_dat=%3Cproquest_cross%3E2402505529%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-acb63a6f83bd8b4b4c2eb5e83e0ac9793f0d737209965c350a239913fff5a49a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2402505529&rft_id=info:pmid/&rfr_iscdi=true |