Loading…
Heterogeneous CPU/GPU co-execution of CFD simulations on the POWER9 architecture: Application to airplane aerodynamics
High fidelity Computational Fluid Dynamics simulations are generally associated with large computing requirements, which are progressively acute with each new generation of supercomputers. However, significant research efforts are required to unlock the computing power of leading-edge systems, curre...
Saved in:
Published in: | arXiv.org 2020-07 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Borrell, R Dosimont, D Garcia-Gasulla, M Houzeaux, G Lehmkuhl, O Mehta, V Owen, H Vazquez, M Oyarzun, G |
description | High fidelity Computational Fluid Dynamics simulations are generally associated with large computing requirements, which are progressively acute with each new generation of supercomputers. However, significant research efforts are required to unlock the computing power of leading-edge systems, currently referred to as pre-Exascale systems, based on increasingly complex architectures. In this paper, we present the approach implemented in the computational mechanics code Alya. We describe in detail the parallelization strategy implemented to fully exploit the different levels of parallelism, together with a novel co-execution method for the efficient utilization of heterogeneous CPU/GPU architectures. The latter is based on a multi-code co-execution approach with a dynamic load balancing mechanism. The assessment of the performance of all the proposed strategies has been carried out for airplane simulations on the POWER9 architecture accelerated with NVIDIA Volta V100 GPUs. |
doi_str_mv | 10.48550/arxiv.2005.05899 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2402619139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402619139</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-48c6d06f99ace4478478b653aab35ceff0529ff35a1ce4185cbc5aef844e355e3</originalsourceid><addsrcrecordid>eNotUEtrAjEYDIVCxfoDegv0vJrNY016k62PgqAUpUeJ8UuNrJttsiv235s-YGBgZpiBQegpJ0MuhSAjHa7uMqSEiCERUqk71KOM5ZnklD6gQYwnQggtxlQI1kOXBbQQ_CfU4LuIy_V2NF9vsfEZXMF0rfM19haXs1cc3bmr9I8ScVLbI-D16mP6rrAO5uhaMG0X4AVPmqZy5jeIW4-1C02la8A67Ry-a312Jj6ie6urCIN_7qPNbLopF9lyNX8rJ8tMC6oyLk1xIIVVShvgfCwT9oVgWu-ZMGAtSSlrmdB58nMpzN4IDVZyDkwIYH30_FfbBP_VQWx3J9-FOi3uKE8n5Cpnit0Ab19eaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402619139</pqid></control><display><type>article</type><title>Heterogeneous CPU/GPU co-execution of CFD simulations on the POWER9 architecture: Application to airplane aerodynamics</title><source>Publicly Available Content Database</source><creator>Borrell, R ; Dosimont, D ; Garcia-Gasulla, M ; Houzeaux, G ; Lehmkuhl, O ; Mehta, V ; Owen, H ; Vazquez, M ; Oyarzun, G</creator><creatorcontrib>Borrell, R ; Dosimont, D ; Garcia-Gasulla, M ; Houzeaux, G ; Lehmkuhl, O ; Mehta, V ; Owen, H ; Vazquez, M ; Oyarzun, G</creatorcontrib><description>High fidelity Computational Fluid Dynamics simulations are generally associated with large computing requirements, which are progressively acute with each new generation of supercomputers. However, significant research efforts are required to unlock the computing power of leading-edge systems, currently referred to as pre-Exascale systems, based on increasingly complex architectures. In this paper, we present the approach implemented in the computational mechanics code Alya. We describe in detail the parallelization strategy implemented to fully exploit the different levels of parallelism, together with a novel co-execution method for the efficient utilization of heterogeneous CPU/GPU architectures. The latter is based on a multi-code co-execution approach with a dynamic load balancing mechanism. The assessment of the performance of all the proposed strategies has been carried out for airplane simulations on the POWER9 architecture accelerated with NVIDIA Volta V100 GPUs.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2005.05899</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Aerodynamics ; Computational fluid dynamics ; Computer architecture ; Computer simulation ; Dynamic loads ; Parallel processing ; Simulation ; Supercomputers</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2402619139?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Borrell, R</creatorcontrib><creatorcontrib>Dosimont, D</creatorcontrib><creatorcontrib>Garcia-Gasulla, M</creatorcontrib><creatorcontrib>Houzeaux, G</creatorcontrib><creatorcontrib>Lehmkuhl, O</creatorcontrib><creatorcontrib>Mehta, V</creatorcontrib><creatorcontrib>Owen, H</creatorcontrib><creatorcontrib>Vazquez, M</creatorcontrib><creatorcontrib>Oyarzun, G</creatorcontrib><title>Heterogeneous CPU/GPU co-execution of CFD simulations on the POWER9 architecture: Application to airplane aerodynamics</title><title>arXiv.org</title><description>High fidelity Computational Fluid Dynamics simulations are generally associated with large computing requirements, which are progressively acute with each new generation of supercomputers. However, significant research efforts are required to unlock the computing power of leading-edge systems, currently referred to as pre-Exascale systems, based on increasingly complex architectures. In this paper, we present the approach implemented in the computational mechanics code Alya. We describe in detail the parallelization strategy implemented to fully exploit the different levels of parallelism, together with a novel co-execution method for the efficient utilization of heterogeneous CPU/GPU architectures. The latter is based on a multi-code co-execution approach with a dynamic load balancing mechanism. The assessment of the performance of all the proposed strategies has been carried out for airplane simulations on the POWER9 architecture accelerated with NVIDIA Volta V100 GPUs.</description><subject>Aerodynamics</subject><subject>Computational fluid dynamics</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Dynamic loads</subject><subject>Parallel processing</subject><subject>Simulation</subject><subject>Supercomputers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotUEtrAjEYDIVCxfoDegv0vJrNY016k62PgqAUpUeJ8UuNrJttsiv235s-YGBgZpiBQegpJ0MuhSAjHa7uMqSEiCERUqk71KOM5ZnklD6gQYwnQggtxlQI1kOXBbQQ_CfU4LuIy_V2NF9vsfEZXMF0rfM19haXs1cc3bmr9I8ScVLbI-D16mP6rrAO5uhaMG0X4AVPmqZy5jeIW4-1C02la8A67Ry-a312Jj6ie6urCIN_7qPNbLopF9lyNX8rJ8tMC6oyLk1xIIVVShvgfCwT9oVgWu-ZMGAtSSlrmdB58nMpzN4IDVZyDkwIYH30_FfbBP_VQWx3J9-FOi3uKE8n5Cpnit0Ab19eaw</recordid><startdate>20200706</startdate><enddate>20200706</enddate><creator>Borrell, R</creator><creator>Dosimont, D</creator><creator>Garcia-Gasulla, M</creator><creator>Houzeaux, G</creator><creator>Lehmkuhl, O</creator><creator>Mehta, V</creator><creator>Owen, H</creator><creator>Vazquez, M</creator><creator>Oyarzun, G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200706</creationdate><title>Heterogeneous CPU/GPU co-execution of CFD simulations on the POWER9 architecture: Application to airplane aerodynamics</title><author>Borrell, R ; Dosimont, D ; Garcia-Gasulla, M ; Houzeaux, G ; Lehmkuhl, O ; Mehta, V ; Owen, H ; Vazquez, M ; Oyarzun, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-48c6d06f99ace4478478b653aab35ceff0529ff35a1ce4185cbc5aef844e355e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Computational fluid dynamics</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Dynamic loads</topic><topic>Parallel processing</topic><topic>Simulation</topic><topic>Supercomputers</topic><toplevel>online_resources</toplevel><creatorcontrib>Borrell, R</creatorcontrib><creatorcontrib>Dosimont, D</creatorcontrib><creatorcontrib>Garcia-Gasulla, M</creatorcontrib><creatorcontrib>Houzeaux, G</creatorcontrib><creatorcontrib>Lehmkuhl, O</creatorcontrib><creatorcontrib>Mehta, V</creatorcontrib><creatorcontrib>Owen, H</creatorcontrib><creatorcontrib>Vazquez, M</creatorcontrib><creatorcontrib>Oyarzun, G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borrell, R</au><au>Dosimont, D</au><au>Garcia-Gasulla, M</au><au>Houzeaux, G</au><au>Lehmkuhl, O</au><au>Mehta, V</au><au>Owen, H</au><au>Vazquez, M</au><au>Oyarzun, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous CPU/GPU co-execution of CFD simulations on the POWER9 architecture: Application to airplane aerodynamics</atitle><jtitle>arXiv.org</jtitle><date>2020-07-06</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>High fidelity Computational Fluid Dynamics simulations are generally associated with large computing requirements, which are progressively acute with each new generation of supercomputers. However, significant research efforts are required to unlock the computing power of leading-edge systems, currently referred to as pre-Exascale systems, based on increasingly complex architectures. In this paper, we present the approach implemented in the computational mechanics code Alya. We describe in detail the parallelization strategy implemented to fully exploit the different levels of parallelism, together with a novel co-execution method for the efficient utilization of heterogeneous CPU/GPU architectures. The latter is based on a multi-code co-execution approach with a dynamic load balancing mechanism. The assessment of the performance of all the proposed strategies has been carried out for airplane simulations on the POWER9 architecture accelerated with NVIDIA Volta V100 GPUs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2005.05899</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2402619139 |
source | Publicly Available Content Database |
subjects | Aerodynamics Computational fluid dynamics Computer architecture Computer simulation Dynamic loads Parallel processing Simulation Supercomputers |
title | Heterogeneous CPU/GPU co-execution of CFD simulations on the POWER9 architecture: Application to airplane aerodynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20CPU/GPU%20co-execution%20of%20CFD%20simulations%20on%20the%20POWER9%20architecture:%20Application%20to%20airplane%20aerodynamics&rft.jtitle=arXiv.org&rft.au=Borrell,%20R&rft.date=2020-07-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2005.05899&rft_dat=%3Cproquest%3E2402619139%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-48c6d06f99ace4478478b653aab35ceff0529ff35a1ce4185cbc5aef844e355e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2402619139&rft_id=info:pmid/&rfr_iscdi=true |