Loading…
Multi-Person Recognition Using Separated Micro-Doppler Signatures
It is challenging to recognize individuals when they move in the radar field of view due to the superimposition of micro-Doppler signatures. This paper presents a multi-person recognition approach by separating micro-Doppler signatures of multiple persons into their individual components. The prelim...
Saved in:
Published in: | IEEE sensors journal 2020-06, Vol.20 (12), p.6605-6611 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3 |
container_end_page | 6611 |
container_issue | 12 |
container_start_page | 6605 |
container_title | IEEE sensors journal |
container_volume | 20 |
creator | Huang, Xuejun Ding, Jinshan Liang, Dongxing Wen, Liwu |
description | It is challenging to recognize individuals when they move in the radar field of view due to the superimposition of micro-Doppler signatures. This paper presents a multi-person recognition approach by separating micro-Doppler signatures of multiple persons into their individual components. The preliminary separation can be obtained by their range difference in a high resolution radar. A multi-task learning network is designed for both the fine separation of micro-Doppler signatures and the personnel recognition. A frequency modulated continuous waveform (FMCW) radar that operates at 77 GHz for automotive applications is used in experiments. The proposed deep-neural-network-based approach gives a convincing result in the test. |
doi_str_mv | 10.1109/JSEN.2020.2977170 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2404040298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9017950</ieee_id><sourcerecordid>2404040298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4u9jqO42NVyp9aQLRI3CzH3VSuShLs5MDbk6gV2sPOYWZ39BFyzdmEc6bvXlbz1wkwYBPQSnHFTsiIS5lTrtL8dNCC0VSor3NyEeOOMa6VVCMyXXb71tN3DLGukg909bbyre_1Z_TVNllhY4NtcZMsvQs1va-bZo8hWfltZdsuYLwkZ6XdR7w67jFZP8zXsye6eHt8nk0X1IEWLUWBkBfSKaf6RpJryCW4jeKyLLKCYSY2IDKVlwApz5xUVtoC0JYpSMysGJPbw9km1D8dxtbs6i5U_UcDKRsGdN67-MHVd40xYGma4L9t-DWcmQGUGUCZAZQ5guozN4eMR8R_v2ZcacnEH8MtY6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404040298</pqid></control><display><type>article</type><title>Multi-Person Recognition Using Separated Micro-Doppler Signatures</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Xuejun ; Ding, Jinshan ; Liang, Dongxing ; Wen, Liwu</creator><creatorcontrib>Huang, Xuejun ; Ding, Jinshan ; Liang, Dongxing ; Wen, Liwu</creatorcontrib><description>It is challenging to recognize individuals when they move in the radar field of view due to the superimposition of micro-Doppler signatures. This paper presents a multi-person recognition approach by separating micro-Doppler signatures of multiple persons into their individual components. The preliminary separation can be obtained by their range difference in a high resolution radar. A multi-task learning network is designed for both the fine separation of micro-Doppler signatures and the personnel recognition. A frequency modulated continuous waveform (FMCW) radar that operates at 77 GHz for automotive applications is used in experiments. The proposed deep-neural-network-based approach gives a convincing result in the test.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.2977170</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chirp ; deep neural network (DNN) ; Doppler effect ; Doppler radar ; Feature extraction ; Field of view ; micro-Doppler signatures ; multi-task learning network ; Neural networks ; Personnel ; Personnel recognition ; Radar signatures ; Radar tracking ; Recognition ; Separation ; Superposition (mathematics) ; Waveforms</subject><ispartof>IEEE sensors journal, 2020-06, Vol.20 (12), p.6605-6611</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3</citedby><cites>FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3</cites><orcidid>0000-0002-9119-0449 ; 0000-0003-4542-9225 ; 0000-0003-2501-8840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9017950$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Huang, Xuejun</creatorcontrib><creatorcontrib>Ding, Jinshan</creatorcontrib><creatorcontrib>Liang, Dongxing</creatorcontrib><creatorcontrib>Wen, Liwu</creatorcontrib><title>Multi-Person Recognition Using Separated Micro-Doppler Signatures</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>It is challenging to recognize individuals when they move in the radar field of view due to the superimposition of micro-Doppler signatures. This paper presents a multi-person recognition approach by separating micro-Doppler signatures of multiple persons into their individual components. The preliminary separation can be obtained by their range difference in a high resolution radar. A multi-task learning network is designed for both the fine separation of micro-Doppler signatures and the personnel recognition. A frequency modulated continuous waveform (FMCW) radar that operates at 77 GHz for automotive applications is used in experiments. The proposed deep-neural-network-based approach gives a convincing result in the test.</description><subject>Chirp</subject><subject>deep neural network (DNN)</subject><subject>Doppler effect</subject><subject>Doppler radar</subject><subject>Feature extraction</subject><subject>Field of view</subject><subject>micro-Doppler signatures</subject><subject>multi-task learning network</subject><subject>Neural networks</subject><subject>Personnel</subject><subject>Personnel recognition</subject><subject>Radar signatures</subject><subject>Radar tracking</subject><subject>Recognition</subject><subject>Separation</subject><subject>Superposition (mathematics)</subject><subject>Waveforms</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4u9jqO42NVyp9aQLRI3CzH3VSuShLs5MDbk6gV2sPOYWZ39BFyzdmEc6bvXlbz1wkwYBPQSnHFTsiIS5lTrtL8dNCC0VSor3NyEeOOMa6VVCMyXXb71tN3DLGukg909bbyre_1Z_TVNllhY4NtcZMsvQs1va-bZo8hWfltZdsuYLwkZ6XdR7w67jFZP8zXsye6eHt8nk0X1IEWLUWBkBfSKaf6RpJryCW4jeKyLLKCYSY2IDKVlwApz5xUVtoC0JYpSMysGJPbw9km1D8dxtbs6i5U_UcDKRsGdN67-MHVd40xYGma4L9t-DWcmQGUGUCZAZQ5guozN4eMR8R_v2ZcacnEH8MtY6Y</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Huang, Xuejun</creator><creator>Ding, Jinshan</creator><creator>Liang, Dongxing</creator><creator>Wen, Liwu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9119-0449</orcidid><orcidid>https://orcid.org/0000-0003-4542-9225</orcidid><orcidid>https://orcid.org/0000-0003-2501-8840</orcidid></search><sort><creationdate>20200615</creationdate><title>Multi-Person Recognition Using Separated Micro-Doppler Signatures</title><author>Huang, Xuejun ; Ding, Jinshan ; Liang, Dongxing ; Wen, Liwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chirp</topic><topic>deep neural network (DNN)</topic><topic>Doppler effect</topic><topic>Doppler radar</topic><topic>Feature extraction</topic><topic>Field of view</topic><topic>micro-Doppler signatures</topic><topic>multi-task learning network</topic><topic>Neural networks</topic><topic>Personnel</topic><topic>Personnel recognition</topic><topic>Radar signatures</topic><topic>Radar tracking</topic><topic>Recognition</topic><topic>Separation</topic><topic>Superposition (mathematics)</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xuejun</creatorcontrib><creatorcontrib>Ding, Jinshan</creatorcontrib><creatorcontrib>Liang, Dongxing</creatorcontrib><creatorcontrib>Wen, Liwu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xuejun</au><au>Ding, Jinshan</au><au>Liang, Dongxing</au><au>Wen, Liwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Person Recognition Using Separated Micro-Doppler Signatures</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-06-15</date><risdate>2020</risdate><volume>20</volume><issue>12</issue><spage>6605</spage><epage>6611</epage><pages>6605-6611</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>It is challenging to recognize individuals when they move in the radar field of view due to the superimposition of micro-Doppler signatures. This paper presents a multi-person recognition approach by separating micro-Doppler signatures of multiple persons into their individual components. The preliminary separation can be obtained by their range difference in a high resolution radar. A multi-task learning network is designed for both the fine separation of micro-Doppler signatures and the personnel recognition. A frequency modulated continuous waveform (FMCW) radar that operates at 77 GHz for automotive applications is used in experiments. The proposed deep-neural-network-based approach gives a convincing result in the test.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.2977170</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9119-0449</orcidid><orcidid>https://orcid.org/0000-0003-4542-9225</orcidid><orcidid>https://orcid.org/0000-0003-2501-8840</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2020-06, Vol.20 (12), p.6605-6611 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2404040298 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Chirp deep neural network (DNN) Doppler effect Doppler radar Feature extraction Field of view micro-Doppler signatures multi-task learning network Neural networks Personnel Personnel recognition Radar signatures Radar tracking Recognition Separation Superposition (mathematics) Waveforms |
title | Multi-Person Recognition Using Separated Micro-Doppler Signatures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Person%20Recognition%20Using%20Separated%20Micro-Doppler%20Signatures&rft.jtitle=IEEE%20sensors%20journal&rft.au=Huang,%20Xuejun&rft.date=2020-06-15&rft.volume=20&rft.issue=12&rft.spage=6605&rft.epage=6611&rft.pages=6605-6611&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.2977170&rft_dat=%3Cproquest_ieee_%3E2404040298%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404040298&rft_id=info:pmid/&rft_ieee_id=9017950&rfr_iscdi=true |