Loading…

Multi-Person Recognition Using Separated Micro-Doppler Signatures

It is challenging to recognize individuals when they move in the radar field of view due to the superimposition of micro-Doppler signatures. This paper presents a multi-person recognition approach by separating micro-Doppler signatures of multiple persons into their individual components. The prelim...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2020-06, Vol.20 (12), p.6605-6611
Main Authors: Huang, Xuejun, Ding, Jinshan, Liang, Dongxing, Wen, Liwu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3
cites cdi_FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3
container_end_page 6611
container_issue 12
container_start_page 6605
container_title IEEE sensors journal
container_volume 20
creator Huang, Xuejun
Ding, Jinshan
Liang, Dongxing
Wen, Liwu
description It is challenging to recognize individuals when they move in the radar field of view due to the superimposition of micro-Doppler signatures. This paper presents a multi-person recognition approach by separating micro-Doppler signatures of multiple persons into their individual components. The preliminary separation can be obtained by their range difference in a high resolution radar. A multi-task learning network is designed for both the fine separation of micro-Doppler signatures and the personnel recognition. A frequency modulated continuous waveform (FMCW) radar that operates at 77 GHz for automotive applications is used in experiments. The proposed deep-neural-network-based approach gives a convincing result in the test.
doi_str_mv 10.1109/JSEN.2020.2977170
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2404040298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9017950</ieee_id><sourcerecordid>2404040298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4u9jqO42NVyp9aQLRI3CzH3VSuShLs5MDbk6gV2sPOYWZ39BFyzdmEc6bvXlbz1wkwYBPQSnHFTsiIS5lTrtL8dNCC0VSor3NyEeOOMa6VVCMyXXb71tN3DLGukg909bbyre_1Z_TVNllhY4NtcZMsvQs1va-bZo8hWfltZdsuYLwkZ6XdR7w67jFZP8zXsye6eHt8nk0X1IEWLUWBkBfSKaf6RpJryCW4jeKyLLKCYSY2IDKVlwApz5xUVtoC0JYpSMysGJPbw9km1D8dxtbs6i5U_UcDKRsGdN67-MHVd40xYGma4L9t-DWcmQGUGUCZAZQ5guozN4eMR8R_v2ZcacnEH8MtY6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404040298</pqid></control><display><type>article</type><title>Multi-Person Recognition Using Separated Micro-Doppler Signatures</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Xuejun ; Ding, Jinshan ; Liang, Dongxing ; Wen, Liwu</creator><creatorcontrib>Huang, Xuejun ; Ding, Jinshan ; Liang, Dongxing ; Wen, Liwu</creatorcontrib><description>It is challenging to recognize individuals when they move in the radar field of view due to the superimposition of micro-Doppler signatures. This paper presents a multi-person recognition approach by separating micro-Doppler signatures of multiple persons into their individual components. The preliminary separation can be obtained by their range difference in a high resolution radar. A multi-task learning network is designed for both the fine separation of micro-Doppler signatures and the personnel recognition. A frequency modulated continuous waveform (FMCW) radar that operates at 77 GHz for automotive applications is used in experiments. The proposed deep-neural-network-based approach gives a convincing result in the test.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.2977170</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chirp ; deep neural network (DNN) ; Doppler effect ; Doppler radar ; Feature extraction ; Field of view ; micro-Doppler signatures ; multi-task learning network ; Neural networks ; Personnel ; Personnel recognition ; Radar signatures ; Radar tracking ; Recognition ; Separation ; Superposition (mathematics) ; Waveforms</subject><ispartof>IEEE sensors journal, 2020-06, Vol.20 (12), p.6605-6611</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3</citedby><cites>FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3</cites><orcidid>0000-0002-9119-0449 ; 0000-0003-4542-9225 ; 0000-0003-2501-8840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9017950$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Huang, Xuejun</creatorcontrib><creatorcontrib>Ding, Jinshan</creatorcontrib><creatorcontrib>Liang, Dongxing</creatorcontrib><creatorcontrib>Wen, Liwu</creatorcontrib><title>Multi-Person Recognition Using Separated Micro-Doppler Signatures</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>It is challenging to recognize individuals when they move in the radar field of view due to the superimposition of micro-Doppler signatures. This paper presents a multi-person recognition approach by separating micro-Doppler signatures of multiple persons into their individual components. The preliminary separation can be obtained by their range difference in a high resolution radar. A multi-task learning network is designed for both the fine separation of micro-Doppler signatures and the personnel recognition. A frequency modulated continuous waveform (FMCW) radar that operates at 77 GHz for automotive applications is used in experiments. The proposed deep-neural-network-based approach gives a convincing result in the test.</description><subject>Chirp</subject><subject>deep neural network (DNN)</subject><subject>Doppler effect</subject><subject>Doppler radar</subject><subject>Feature extraction</subject><subject>Field of view</subject><subject>micro-Doppler signatures</subject><subject>multi-task learning network</subject><subject>Neural networks</subject><subject>Personnel</subject><subject>Personnel recognition</subject><subject>Radar signatures</subject><subject>Radar tracking</subject><subject>Recognition</subject><subject>Separation</subject><subject>Superposition (mathematics)</subject><subject>Waveforms</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4u9jqO42NVyp9aQLRI3CzH3VSuShLs5MDbk6gV2sPOYWZ39BFyzdmEc6bvXlbz1wkwYBPQSnHFTsiIS5lTrtL8dNCC0VSor3NyEeOOMa6VVCMyXXb71tN3DLGukg909bbyre_1Z_TVNllhY4NtcZMsvQs1va-bZo8hWfltZdsuYLwkZ6XdR7w67jFZP8zXsye6eHt8nk0X1IEWLUWBkBfSKaf6RpJryCW4jeKyLLKCYSY2IDKVlwApz5xUVtoC0JYpSMysGJPbw9km1D8dxtbs6i5U_UcDKRsGdN67-MHVd40xYGma4L9t-DWcmQGUGUCZAZQ5guozN4eMR8R_v2ZcacnEH8MtY6Y</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Huang, Xuejun</creator><creator>Ding, Jinshan</creator><creator>Liang, Dongxing</creator><creator>Wen, Liwu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9119-0449</orcidid><orcidid>https://orcid.org/0000-0003-4542-9225</orcidid><orcidid>https://orcid.org/0000-0003-2501-8840</orcidid></search><sort><creationdate>20200615</creationdate><title>Multi-Person Recognition Using Separated Micro-Doppler Signatures</title><author>Huang, Xuejun ; Ding, Jinshan ; Liang, Dongxing ; Wen, Liwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chirp</topic><topic>deep neural network (DNN)</topic><topic>Doppler effect</topic><topic>Doppler radar</topic><topic>Feature extraction</topic><topic>Field of view</topic><topic>micro-Doppler signatures</topic><topic>multi-task learning network</topic><topic>Neural networks</topic><topic>Personnel</topic><topic>Personnel recognition</topic><topic>Radar signatures</topic><topic>Radar tracking</topic><topic>Recognition</topic><topic>Separation</topic><topic>Superposition (mathematics)</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xuejun</creatorcontrib><creatorcontrib>Ding, Jinshan</creatorcontrib><creatorcontrib>Liang, Dongxing</creatorcontrib><creatorcontrib>Wen, Liwu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xuejun</au><au>Ding, Jinshan</au><au>Liang, Dongxing</au><au>Wen, Liwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Person Recognition Using Separated Micro-Doppler Signatures</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-06-15</date><risdate>2020</risdate><volume>20</volume><issue>12</issue><spage>6605</spage><epage>6611</epage><pages>6605-6611</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>It is challenging to recognize individuals when they move in the radar field of view due to the superimposition of micro-Doppler signatures. This paper presents a multi-person recognition approach by separating micro-Doppler signatures of multiple persons into their individual components. The preliminary separation can be obtained by their range difference in a high resolution radar. A multi-task learning network is designed for both the fine separation of micro-Doppler signatures and the personnel recognition. A frequency modulated continuous waveform (FMCW) radar that operates at 77 GHz for automotive applications is used in experiments. The proposed deep-neural-network-based approach gives a convincing result in the test.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.2977170</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9119-0449</orcidid><orcidid>https://orcid.org/0000-0003-4542-9225</orcidid><orcidid>https://orcid.org/0000-0003-2501-8840</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2020-06, Vol.20 (12), p.6605-6611
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2404040298
source IEEE Electronic Library (IEL) Journals
subjects Chirp
deep neural network (DNN)
Doppler effect
Doppler radar
Feature extraction
Field of view
micro-Doppler signatures
multi-task learning network
Neural networks
Personnel
Personnel recognition
Radar signatures
Radar tracking
Recognition
Separation
Superposition (mathematics)
Waveforms
title Multi-Person Recognition Using Separated Micro-Doppler Signatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Person%20Recognition%20Using%20Separated%20Micro-Doppler%20Signatures&rft.jtitle=IEEE%20sensors%20journal&rft.au=Huang,%20Xuejun&rft.date=2020-06-15&rft.volume=20&rft.issue=12&rft.spage=6605&rft.epage=6611&rft.pages=6605-6611&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.2977170&rft_dat=%3Cproquest_ieee_%3E2404040298%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-e3e28b5c7c77485192852cd715fb6b0e63d23678f22416c57a5ab2eaf425e6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404040298&rft_id=info:pmid/&rft_ieee_id=9017950&rfr_iscdi=true