Loading…

LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection

Network intrusion detection is one of the main problems in ensuring the security of modern computer networks, Wireless Sensor Networks (WSN), and the Internet-of-Things (IoT). In order to develop efficient network-intrusion-detection methods, realistic and up-to-date network flow datasets are requir...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2020-05, Vol.9 (5), p.800
Main Authors: Damasevicius, Robertas, Venckauskas, Algimantas, Grigaliunas, Sarunas, Toldinas, Jevgenijus, Morkevicius, Nerijus, Aleliunas, Tautvydas, Smuikys, Paulius
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243
cites cdi_FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243
container_end_page
container_issue 5
container_start_page 800
container_title Electronics (Basel)
container_volume 9
creator Damasevicius, Robertas
Venckauskas, Algimantas
Grigaliunas, Sarunas
Toldinas, Jevgenijus
Morkevicius, Nerijus
Aleliunas, Tautvydas
Smuikys, Paulius
description Network intrusion detection is one of the main problems in ensuring the security of modern computer networks, Wireless Sensor Networks (WSN), and the Internet-of-Things (IoT). In order to develop efficient network-intrusion-detection methods, realistic and up-to-date network flow datasets are required. Despite several recent efforts, there is still a lack of real-world network-based datasets which can capture modern network traffic cases and provide examples of many different types of network attacks and intrusions. To alleviate this need, we present LITNET-2020, a new annotated network benchmark dataset obtained from the real-world academic network. The dataset presents real-world examples of normal and under-attack network traffic. We describe and analyze 85 network flow features of the dataset and 12 attack types. We present the analysis of the dataset features by using statistical analysis and clustering methods. Our results show that the proposed feature set can be effectively used to identify different attack classes in the dataset. The presented network dataset is made freely available for research purposes.
doi_str_mv 10.3390/electronics9050800
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2404173195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404173195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243</originalsourceid><addsrcrecordid>eNplUF1LAzEQDKJgqf0DPgV8Pt183F3iW-mXhVJBKuLTkeQSaD0vNUkp_nsjFRFcFnZgZ2eHQeiawC1jEu5sZ00Kvt-aKKEEAXCGBhRqWUgq6fkffIlGMe4glyRMMBig19Vys55tCgoU7vG4z937pJJt8ZNVXfHiQ9fitU1HH97wvPNHPFVJRZuw8-F3sexTOMSt7_HUpuwmoyt04VQX7ehnDtHzfLaZPBSrx8VyMl4VhhGZClkRUQOpSmKyy0oLphk1tZa11i3VICpuneMtr8pSCOuM4LasnRA6nyvK2RDdnHT3wX8cbEzNzh9Cn182lAMndeaVmUVPLBN8jMG6Zh-27yp8NgSa7xSb_ymyLybpZis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404173195</pqid></control><display><type>article</type><title>LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Damasevicius, Robertas ; Venckauskas, Algimantas ; Grigaliunas, Sarunas ; Toldinas, Jevgenijus ; Morkevicius, Nerijus ; Aleliunas, Tautvydas ; Smuikys, Paulius</creator><creatorcontrib>Damasevicius, Robertas ; Venckauskas, Algimantas ; Grigaliunas, Sarunas ; Toldinas, Jevgenijus ; Morkevicius, Nerijus ; Aleliunas, Tautvydas ; Smuikys, Paulius</creatorcontrib><description>Network intrusion detection is one of the main problems in ensuring the security of modern computer networks, Wireless Sensor Networks (WSN), and the Internet-of-Things (IoT). In order to develop efficient network-intrusion-detection methods, realistic and up-to-date network flow datasets are required. Despite several recent efforts, there is still a lack of real-world network-based datasets which can capture modern network traffic cases and provide examples of many different types of network attacks and intrusions. To alleviate this need, we present LITNET-2020, a new annotated network benchmark dataset obtained from the real-world academic network. The dataset presents real-world examples of normal and under-attack network traffic. We describe and analyze 85 network flow features of the dataset and 12 attack types. We present the analysis of the dataset features by using statistical analysis and clustering methods. Our results show that the proposed feature set can be effectively used to identify different attack classes in the dataset. The presented network dataset is made freely available for research purposes.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9050800</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Clustering ; Communications traffic ; Computer networks ; Cybersecurity ; Data encryption ; Datasets ; Floods ; Internet of Things ; Internet service providers ; Intrusion detection systems ; Medical equipment ; Network security ; Principal components analysis ; Statistical analysis ; Wireless networks ; Wireless sensor networks</subject><ispartof>Electronics (Basel), 2020-05, Vol.9 (5), p.800</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243</citedby><cites>FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243</cites><orcidid>0000-0001-9268-9244 ; 0000-0002-4567-5023 ; 0000-0003-0342-2017 ; 0000-0001-9990-1084 ; 0000-0003-0604-3004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2404173195/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2404173195?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Damasevicius, Robertas</creatorcontrib><creatorcontrib>Venckauskas, Algimantas</creatorcontrib><creatorcontrib>Grigaliunas, Sarunas</creatorcontrib><creatorcontrib>Toldinas, Jevgenijus</creatorcontrib><creatorcontrib>Morkevicius, Nerijus</creatorcontrib><creatorcontrib>Aleliunas, Tautvydas</creatorcontrib><creatorcontrib>Smuikys, Paulius</creatorcontrib><title>LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection</title><title>Electronics (Basel)</title><description>Network intrusion detection is one of the main problems in ensuring the security of modern computer networks, Wireless Sensor Networks (WSN), and the Internet-of-Things (IoT). In order to develop efficient network-intrusion-detection methods, realistic and up-to-date network flow datasets are required. Despite several recent efforts, there is still a lack of real-world network-based datasets which can capture modern network traffic cases and provide examples of many different types of network attacks and intrusions. To alleviate this need, we present LITNET-2020, a new annotated network benchmark dataset obtained from the real-world academic network. The dataset presents real-world examples of normal and under-attack network traffic. We describe and analyze 85 network flow features of the dataset and 12 attack types. We present the analysis of the dataset features by using statistical analysis and clustering methods. Our results show that the proposed feature set can be effectively used to identify different attack classes in the dataset. The presented network dataset is made freely available for research purposes.</description><subject>Accuracy</subject><subject>Clustering</subject><subject>Communications traffic</subject><subject>Computer networks</subject><subject>Cybersecurity</subject><subject>Data encryption</subject><subject>Datasets</subject><subject>Floods</subject><subject>Internet of Things</subject><subject>Internet service providers</subject><subject>Intrusion detection systems</subject><subject>Medical equipment</subject><subject>Network security</subject><subject>Principal components analysis</subject><subject>Statistical analysis</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplUF1LAzEQDKJgqf0DPgV8Pt183F3iW-mXhVJBKuLTkeQSaD0vNUkp_nsjFRFcFnZgZ2eHQeiawC1jEu5sZ00Kvt-aKKEEAXCGBhRqWUgq6fkffIlGMe4glyRMMBig19Vys55tCgoU7vG4z937pJJt8ZNVXfHiQ9fitU1HH97wvPNHPFVJRZuw8-F3sexTOMSt7_HUpuwmoyt04VQX7ehnDtHzfLaZPBSrx8VyMl4VhhGZClkRUQOpSmKyy0oLphk1tZa11i3VICpuneMtr8pSCOuM4LasnRA6nyvK2RDdnHT3wX8cbEzNzh9Cn182lAMndeaVmUVPLBN8jMG6Zh-27yp8NgSa7xSb_ymyLybpZis</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Damasevicius, Robertas</creator><creator>Venckauskas, Algimantas</creator><creator>Grigaliunas, Sarunas</creator><creator>Toldinas, Jevgenijus</creator><creator>Morkevicius, Nerijus</creator><creator>Aleliunas, Tautvydas</creator><creator>Smuikys, Paulius</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9268-9244</orcidid><orcidid>https://orcid.org/0000-0002-4567-5023</orcidid><orcidid>https://orcid.org/0000-0003-0342-2017</orcidid><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid><orcidid>https://orcid.org/0000-0003-0604-3004</orcidid></search><sort><creationdate>20200501</creationdate><title>LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection</title><author>Damasevicius, Robertas ; Venckauskas, Algimantas ; Grigaliunas, Sarunas ; Toldinas, Jevgenijus ; Morkevicius, Nerijus ; Aleliunas, Tautvydas ; Smuikys, Paulius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Clustering</topic><topic>Communications traffic</topic><topic>Computer networks</topic><topic>Cybersecurity</topic><topic>Data encryption</topic><topic>Datasets</topic><topic>Floods</topic><topic>Internet of Things</topic><topic>Internet service providers</topic><topic>Intrusion detection systems</topic><topic>Medical equipment</topic><topic>Network security</topic><topic>Principal components analysis</topic><topic>Statistical analysis</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damasevicius, Robertas</creatorcontrib><creatorcontrib>Venckauskas, Algimantas</creatorcontrib><creatorcontrib>Grigaliunas, Sarunas</creatorcontrib><creatorcontrib>Toldinas, Jevgenijus</creatorcontrib><creatorcontrib>Morkevicius, Nerijus</creatorcontrib><creatorcontrib>Aleliunas, Tautvydas</creatorcontrib><creatorcontrib>Smuikys, Paulius</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damasevicius, Robertas</au><au>Venckauskas, Algimantas</au><au>Grigaliunas, Sarunas</au><au>Toldinas, Jevgenijus</au><au>Morkevicius, Nerijus</au><au>Aleliunas, Tautvydas</au><au>Smuikys, Paulius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>9</volume><issue>5</issue><spage>800</spage><pages>800-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Network intrusion detection is one of the main problems in ensuring the security of modern computer networks, Wireless Sensor Networks (WSN), and the Internet-of-Things (IoT). In order to develop efficient network-intrusion-detection methods, realistic and up-to-date network flow datasets are required. Despite several recent efforts, there is still a lack of real-world network-based datasets which can capture modern network traffic cases and provide examples of many different types of network attacks and intrusions. To alleviate this need, we present LITNET-2020, a new annotated network benchmark dataset obtained from the real-world academic network. The dataset presents real-world examples of normal and under-attack network traffic. We describe and analyze 85 network flow features of the dataset and 12 attack types. We present the analysis of the dataset features by using statistical analysis and clustering methods. Our results show that the proposed feature set can be effectively used to identify different attack classes in the dataset. The presented network dataset is made freely available for research purposes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9050800</doi><orcidid>https://orcid.org/0000-0001-9268-9244</orcidid><orcidid>https://orcid.org/0000-0002-4567-5023</orcidid><orcidid>https://orcid.org/0000-0003-0342-2017</orcidid><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid><orcidid>https://orcid.org/0000-0003-0604-3004</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2020-05, Vol.9 (5), p.800
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2404173195
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
Clustering
Communications traffic
Computer networks
Cybersecurity
Data encryption
Datasets
Floods
Internet of Things
Internet service providers
Intrusion detection systems
Medical equipment
Network security
Principal components analysis
Statistical analysis
Wireless networks
Wireless sensor networks
title LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LITNET-2020:%20An%20Annotated%20Real-World%20Network%20Flow%20Dataset%20for%20Network%20Intrusion%20Detection&rft.jtitle=Electronics%20(Basel)&rft.au=Damasevicius,%20Robertas&rft.date=2020-05-01&rft.volume=9&rft.issue=5&rft.spage=800&rft.pages=800-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9050800&rft_dat=%3Cproquest_cross%3E2404173195%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404173195&rft_id=info:pmid/&rfr_iscdi=true