Loading…
LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection
Network intrusion detection is one of the main problems in ensuring the security of modern computer networks, Wireless Sensor Networks (WSN), and the Internet-of-Things (IoT). In order to develop efficient network-intrusion-detection methods, realistic and up-to-date network flow datasets are requir...
Saved in:
Published in: | Electronics (Basel) 2020-05, Vol.9 (5), p.800 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243 |
container_end_page | |
container_issue | 5 |
container_start_page | 800 |
container_title | Electronics (Basel) |
container_volume | 9 |
creator | Damasevicius, Robertas Venckauskas, Algimantas Grigaliunas, Sarunas Toldinas, Jevgenijus Morkevicius, Nerijus Aleliunas, Tautvydas Smuikys, Paulius |
description | Network intrusion detection is one of the main problems in ensuring the security of modern computer networks, Wireless Sensor Networks (WSN), and the Internet-of-Things (IoT). In order to develop efficient network-intrusion-detection methods, realistic and up-to-date network flow datasets are required. Despite several recent efforts, there is still a lack of real-world network-based datasets which can capture modern network traffic cases and provide examples of many different types of network attacks and intrusions. To alleviate this need, we present LITNET-2020, a new annotated network benchmark dataset obtained from the real-world academic network. The dataset presents real-world examples of normal and under-attack network traffic. We describe and analyze 85 network flow features of the dataset and 12 attack types. We present the analysis of the dataset features by using statistical analysis and clustering methods. Our results show that the proposed feature set can be effectively used to identify different attack classes in the dataset. The presented network dataset is made freely available for research purposes. |
doi_str_mv | 10.3390/electronics9050800 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2404173195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404173195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243</originalsourceid><addsrcrecordid>eNplUF1LAzEQDKJgqf0DPgV8Pt183F3iW-mXhVJBKuLTkeQSaD0vNUkp_nsjFRFcFnZgZ2eHQeiawC1jEu5sZ00Kvt-aKKEEAXCGBhRqWUgq6fkffIlGMe4glyRMMBig19Vys55tCgoU7vG4z937pJJt8ZNVXfHiQ9fitU1HH97wvPNHPFVJRZuw8-F3sexTOMSt7_HUpuwmoyt04VQX7ehnDtHzfLaZPBSrx8VyMl4VhhGZClkRUQOpSmKyy0oLphk1tZa11i3VICpuneMtr8pSCOuM4LasnRA6nyvK2RDdnHT3wX8cbEzNzh9Cn182lAMndeaVmUVPLBN8jMG6Zh-27yp8NgSa7xSb_ymyLybpZis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404173195</pqid></control><display><type>article</type><title>LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Damasevicius, Robertas ; Venckauskas, Algimantas ; Grigaliunas, Sarunas ; Toldinas, Jevgenijus ; Morkevicius, Nerijus ; Aleliunas, Tautvydas ; Smuikys, Paulius</creator><creatorcontrib>Damasevicius, Robertas ; Venckauskas, Algimantas ; Grigaliunas, Sarunas ; Toldinas, Jevgenijus ; Morkevicius, Nerijus ; Aleliunas, Tautvydas ; Smuikys, Paulius</creatorcontrib><description>Network intrusion detection is one of the main problems in ensuring the security of modern computer networks, Wireless Sensor Networks (WSN), and the Internet-of-Things (IoT). In order to develop efficient network-intrusion-detection methods, realistic and up-to-date network flow datasets are required. Despite several recent efforts, there is still a lack of real-world network-based datasets which can capture modern network traffic cases and provide examples of many different types of network attacks and intrusions. To alleviate this need, we present LITNET-2020, a new annotated network benchmark dataset obtained from the real-world academic network. The dataset presents real-world examples of normal and under-attack network traffic. We describe and analyze 85 network flow features of the dataset and 12 attack types. We present the analysis of the dataset features by using statistical analysis and clustering methods. Our results show that the proposed feature set can be effectively used to identify different attack classes in the dataset. The presented network dataset is made freely available for research purposes.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9050800</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Clustering ; Communications traffic ; Computer networks ; Cybersecurity ; Data encryption ; Datasets ; Floods ; Internet of Things ; Internet service providers ; Intrusion detection systems ; Medical equipment ; Network security ; Principal components analysis ; Statistical analysis ; Wireless networks ; Wireless sensor networks</subject><ispartof>Electronics (Basel), 2020-05, Vol.9 (5), p.800</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243</citedby><cites>FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243</cites><orcidid>0000-0001-9268-9244 ; 0000-0002-4567-5023 ; 0000-0003-0342-2017 ; 0000-0001-9990-1084 ; 0000-0003-0604-3004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2404173195/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2404173195?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Damasevicius, Robertas</creatorcontrib><creatorcontrib>Venckauskas, Algimantas</creatorcontrib><creatorcontrib>Grigaliunas, Sarunas</creatorcontrib><creatorcontrib>Toldinas, Jevgenijus</creatorcontrib><creatorcontrib>Morkevicius, Nerijus</creatorcontrib><creatorcontrib>Aleliunas, Tautvydas</creatorcontrib><creatorcontrib>Smuikys, Paulius</creatorcontrib><title>LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection</title><title>Electronics (Basel)</title><description>Network intrusion detection is one of the main problems in ensuring the security of modern computer networks, Wireless Sensor Networks (WSN), and the Internet-of-Things (IoT). In order to develop efficient network-intrusion-detection methods, realistic and up-to-date network flow datasets are required. Despite several recent efforts, there is still a lack of real-world network-based datasets which can capture modern network traffic cases and provide examples of many different types of network attacks and intrusions. To alleviate this need, we present LITNET-2020, a new annotated network benchmark dataset obtained from the real-world academic network. The dataset presents real-world examples of normal and under-attack network traffic. We describe and analyze 85 network flow features of the dataset and 12 attack types. We present the analysis of the dataset features by using statistical analysis and clustering methods. Our results show that the proposed feature set can be effectively used to identify different attack classes in the dataset. The presented network dataset is made freely available for research purposes.</description><subject>Accuracy</subject><subject>Clustering</subject><subject>Communications traffic</subject><subject>Computer networks</subject><subject>Cybersecurity</subject><subject>Data encryption</subject><subject>Datasets</subject><subject>Floods</subject><subject>Internet of Things</subject><subject>Internet service providers</subject><subject>Intrusion detection systems</subject><subject>Medical equipment</subject><subject>Network security</subject><subject>Principal components analysis</subject><subject>Statistical analysis</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplUF1LAzEQDKJgqf0DPgV8Pt183F3iW-mXhVJBKuLTkeQSaD0vNUkp_nsjFRFcFnZgZ2eHQeiawC1jEu5sZ00Kvt-aKKEEAXCGBhRqWUgq6fkffIlGMe4glyRMMBig19Vys55tCgoU7vG4z937pJJt8ZNVXfHiQ9fitU1HH97wvPNHPFVJRZuw8-F3sexTOMSt7_HUpuwmoyt04VQX7ehnDtHzfLaZPBSrx8VyMl4VhhGZClkRUQOpSmKyy0oLphk1tZa11i3VICpuneMtr8pSCOuM4LasnRA6nyvK2RDdnHT3wX8cbEzNzh9Cn182lAMndeaVmUVPLBN8jMG6Zh-27yp8NgSa7xSb_ymyLybpZis</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Damasevicius, Robertas</creator><creator>Venckauskas, Algimantas</creator><creator>Grigaliunas, Sarunas</creator><creator>Toldinas, Jevgenijus</creator><creator>Morkevicius, Nerijus</creator><creator>Aleliunas, Tautvydas</creator><creator>Smuikys, Paulius</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9268-9244</orcidid><orcidid>https://orcid.org/0000-0002-4567-5023</orcidid><orcidid>https://orcid.org/0000-0003-0342-2017</orcidid><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid><orcidid>https://orcid.org/0000-0003-0604-3004</orcidid></search><sort><creationdate>20200501</creationdate><title>LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection</title><author>Damasevicius, Robertas ; Venckauskas, Algimantas ; Grigaliunas, Sarunas ; Toldinas, Jevgenijus ; Morkevicius, Nerijus ; Aleliunas, Tautvydas ; Smuikys, Paulius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Clustering</topic><topic>Communications traffic</topic><topic>Computer networks</topic><topic>Cybersecurity</topic><topic>Data encryption</topic><topic>Datasets</topic><topic>Floods</topic><topic>Internet of Things</topic><topic>Internet service providers</topic><topic>Intrusion detection systems</topic><topic>Medical equipment</topic><topic>Network security</topic><topic>Principal components analysis</topic><topic>Statistical analysis</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damasevicius, Robertas</creatorcontrib><creatorcontrib>Venckauskas, Algimantas</creatorcontrib><creatorcontrib>Grigaliunas, Sarunas</creatorcontrib><creatorcontrib>Toldinas, Jevgenijus</creatorcontrib><creatorcontrib>Morkevicius, Nerijus</creatorcontrib><creatorcontrib>Aleliunas, Tautvydas</creatorcontrib><creatorcontrib>Smuikys, Paulius</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damasevicius, Robertas</au><au>Venckauskas, Algimantas</au><au>Grigaliunas, Sarunas</au><au>Toldinas, Jevgenijus</au><au>Morkevicius, Nerijus</au><au>Aleliunas, Tautvydas</au><au>Smuikys, Paulius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>9</volume><issue>5</issue><spage>800</spage><pages>800-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Network intrusion detection is one of the main problems in ensuring the security of modern computer networks, Wireless Sensor Networks (WSN), and the Internet-of-Things (IoT). In order to develop efficient network-intrusion-detection methods, realistic and up-to-date network flow datasets are required. Despite several recent efforts, there is still a lack of real-world network-based datasets which can capture modern network traffic cases and provide examples of many different types of network attacks and intrusions. To alleviate this need, we present LITNET-2020, a new annotated network benchmark dataset obtained from the real-world academic network. The dataset presents real-world examples of normal and under-attack network traffic. We describe and analyze 85 network flow features of the dataset and 12 attack types. We present the analysis of the dataset features by using statistical analysis and clustering methods. Our results show that the proposed feature set can be effectively used to identify different attack classes in the dataset. The presented network dataset is made freely available for research purposes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9050800</doi><orcidid>https://orcid.org/0000-0001-9268-9244</orcidid><orcidid>https://orcid.org/0000-0002-4567-5023</orcidid><orcidid>https://orcid.org/0000-0003-0342-2017</orcidid><orcidid>https://orcid.org/0000-0001-9990-1084</orcidid><orcidid>https://orcid.org/0000-0003-0604-3004</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2020-05, Vol.9 (5), p.800 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2404173195 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Clustering Communications traffic Computer networks Cybersecurity Data encryption Datasets Floods Internet of Things Internet service providers Intrusion detection systems Medical equipment Network security Principal components analysis Statistical analysis Wireless networks Wireless sensor networks |
title | LITNET-2020: An Annotated Real-World Network Flow Dataset for Network Intrusion Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LITNET-2020:%20An%20Annotated%20Real-World%20Network%20Flow%20Dataset%20for%20Network%20Intrusion%20Detection&rft.jtitle=Electronics%20(Basel)&rft.au=Damasevicius,%20Robertas&rft.date=2020-05-01&rft.volume=9&rft.issue=5&rft.spage=800&rft.pages=800-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9050800&rft_dat=%3Cproquest_cross%3E2404173195%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9618701651c0796b83b32c7b97bbd2b0864eff4d465588efc84e57f88b319a243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404173195&rft_id=info:pmid/&rfr_iscdi=true |