Loading…

Dissipative nonequilibrium synchronization of topological edge states via self-oscillation

The interplay of synchronization and topological band structures with symmetry protected midgap states under the influence of driving and dissipation is largely unexplored. Here we consider a trimer chain of electron shuttles, each consisting of a harmonic oscillator coupled to a quantum dot positio...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-08
Main Authors: Wächtler, C W, Bastidas, V M, Schaller, G, Munro, W J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wächtler, C W
Bastidas, V M
Schaller, G
Munro, W J
description The interplay of synchronization and topological band structures with symmetry protected midgap states under the influence of driving and dissipation is largely unexplored. Here we consider a trimer chain of electron shuttles, each consisting of a harmonic oscillator coupled to a quantum dot positioned between two electronic leads. Each shuttle is subject to thermal dissipation and undergoes a bifurcation towards self-oscillation with a stable limit cycle if driven by a bias voltage between the leads. By mechanically coupling the oscillators together, we observe synchronized motion at the ends of the chain, which can be explained using a linear stability analysis. Due to the inversion symmetry of the trimer chain, these synchronized states are topologically protected against local disorder. Furthermore, with current experimental feasibility, the synchronized motion can be observed by measuring the dot occupation of each shuttle. Our results open a new avenue to enhance the robustness of synchronized motion by exploiting topology.
doi_str_mv 10.48550/arxiv.2005.07204
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2404190039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404190039</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-73b162f2dbc229110e37ba1debeb558fd4969f16989710b97d8e582db7effad73</originalsourceid><addsrcrecordid>eNotjb1OwzAURi0kJKrSB2CzxJxyfR3H8YjKX6VKLJ1YKju5Lq5M3MZJBDw9FTCd4Tv6DmM3ApZlrRTc2f4zTEsEUEvQCOUFm6GUoqhLxCu2yPkAAFhpVErO2NtDyDkc7RAm4l3q6DSGGFwfxg-ev7rmvU9d-D7PqePJ8yEdU0z70NjIqd0Tz4MdKPMpWJ4p-iLlJsT461-zS29jpsU_52z79LhdvRSb1-f16n5TWIWm0NKJCj22rkE0QgBJ7axoyZFTqvZtaSrjRWVqowU4o9uaVH3WNXlvWy3n7Pbv9tin00h52B3S2Hfn4g5LKIUBkEb-AC0JVlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404190039</pqid></control><display><type>article</type><title>Dissipative nonequilibrium synchronization of topological edge states via self-oscillation</title><source>Publicly Available Content Database</source><creator>Wächtler, C W ; Bastidas, V M ; Schaller, G ; Munro, W J</creator><creatorcontrib>Wächtler, C W ; Bastidas, V M ; Schaller, G ; Munro, W J</creatorcontrib><description>The interplay of synchronization and topological band structures with symmetry protected midgap states under the influence of driving and dissipation is largely unexplored. Here we consider a trimer chain of electron shuttles, each consisting of a harmonic oscillator coupled to a quantum dot positioned between two electronic leads. Each shuttle is subject to thermal dissipation and undergoes a bifurcation towards self-oscillation with a stable limit cycle if driven by a bias voltage between the leads. By mechanically coupling the oscillators together, we observe synchronized motion at the ends of the chain, which can be explained using a linear stability analysis. Due to the inversion symmetry of the trimer chain, these synchronized states are topologically protected against local disorder. Furthermore, with current experimental feasibility, the synchronized motion can be observed by measuring the dot occupation of each shuttle. Our results open a new avenue to enhance the robustness of synchronized motion by exploiting topology.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2005.07204</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bifurcations ; Chains ; Harmonic oscillators ; Quantum dots ; Stability analysis ; Symmetry ; Synchronism ; Topology ; Trimers</subject><ispartof>arXiv.org, 2020-08</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2404190039?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25740,27912,36999,44577</link.rule.ids></links><search><creatorcontrib>Wächtler, C W</creatorcontrib><creatorcontrib>Bastidas, V M</creatorcontrib><creatorcontrib>Schaller, G</creatorcontrib><creatorcontrib>Munro, W J</creatorcontrib><title>Dissipative nonequilibrium synchronization of topological edge states via self-oscillation</title><title>arXiv.org</title><description>The interplay of synchronization and topological band structures with symmetry protected midgap states under the influence of driving and dissipation is largely unexplored. Here we consider a trimer chain of electron shuttles, each consisting of a harmonic oscillator coupled to a quantum dot positioned between two electronic leads. Each shuttle is subject to thermal dissipation and undergoes a bifurcation towards self-oscillation with a stable limit cycle if driven by a bias voltage between the leads. By mechanically coupling the oscillators together, we observe synchronized motion at the ends of the chain, which can be explained using a linear stability analysis. Due to the inversion symmetry of the trimer chain, these synchronized states are topologically protected against local disorder. Furthermore, with current experimental feasibility, the synchronized motion can be observed by measuring the dot occupation of each shuttle. Our results open a new avenue to enhance the robustness of synchronized motion by exploiting topology.</description><subject>Bifurcations</subject><subject>Chains</subject><subject>Harmonic oscillators</subject><subject>Quantum dots</subject><subject>Stability analysis</subject><subject>Symmetry</subject><subject>Synchronism</subject><subject>Topology</subject><subject>Trimers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjb1OwzAURi0kJKrSB2CzxJxyfR3H8YjKX6VKLJ1YKju5Lq5M3MZJBDw9FTCd4Tv6DmM3ApZlrRTc2f4zTEsEUEvQCOUFm6GUoqhLxCu2yPkAAFhpVErO2NtDyDkc7RAm4l3q6DSGGFwfxg-ev7rmvU9d-D7PqePJ8yEdU0z70NjIqd0Tz4MdKPMpWJ4p-iLlJsT461-zS29jpsU_52z79LhdvRSb1-f16n5TWIWm0NKJCj22rkE0QgBJ7axoyZFTqvZtaSrjRWVqowU4o9uaVH3WNXlvWy3n7Pbv9tin00h52B3S2Hfn4g5LKIUBkEb-AC0JVlg</recordid><startdate>20200817</startdate><enddate>20200817</enddate><creator>Wächtler, C W</creator><creator>Bastidas, V M</creator><creator>Schaller, G</creator><creator>Munro, W J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200817</creationdate><title>Dissipative nonequilibrium synchronization of topological edge states via self-oscillation</title><author>Wächtler, C W ; Bastidas, V M ; Schaller, G ; Munro, W J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-73b162f2dbc229110e37ba1debeb558fd4969f16989710b97d8e582db7effad73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bifurcations</topic><topic>Chains</topic><topic>Harmonic oscillators</topic><topic>Quantum dots</topic><topic>Stability analysis</topic><topic>Symmetry</topic><topic>Synchronism</topic><topic>Topology</topic><topic>Trimers</topic><toplevel>online_resources</toplevel><creatorcontrib>Wächtler, C W</creatorcontrib><creatorcontrib>Bastidas, V M</creatorcontrib><creatorcontrib>Schaller, G</creatorcontrib><creatorcontrib>Munro, W J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wächtler, C W</au><au>Bastidas, V M</au><au>Schaller, G</au><au>Munro, W J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipative nonequilibrium synchronization of topological edge states via self-oscillation</atitle><jtitle>arXiv.org</jtitle><date>2020-08-17</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The interplay of synchronization and topological band structures with symmetry protected midgap states under the influence of driving and dissipation is largely unexplored. Here we consider a trimer chain of electron shuttles, each consisting of a harmonic oscillator coupled to a quantum dot positioned between two electronic leads. Each shuttle is subject to thermal dissipation and undergoes a bifurcation towards self-oscillation with a stable limit cycle if driven by a bias voltage between the leads. By mechanically coupling the oscillators together, we observe synchronized motion at the ends of the chain, which can be explained using a linear stability analysis. Due to the inversion symmetry of the trimer chain, these synchronized states are topologically protected against local disorder. Furthermore, with current experimental feasibility, the synchronized motion can be observed by measuring the dot occupation of each shuttle. Our results open a new avenue to enhance the robustness of synchronized motion by exploiting topology.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2005.07204</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2404190039
source Publicly Available Content Database
subjects Bifurcations
Chains
Harmonic oscillators
Quantum dots
Stability analysis
Symmetry
Synchronism
Topology
Trimers
title Dissipative nonequilibrium synchronization of topological edge states via self-oscillation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipative%20nonequilibrium%20synchronization%20of%20topological%20edge%20states%20via%20self-oscillation&rft.jtitle=arXiv.org&rft.au=W%C3%A4chtler,%20C%20W&rft.date=2020-08-17&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2005.07204&rft_dat=%3Cproquest%3E2404190039%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-73b162f2dbc229110e37ba1debeb558fd4969f16989710b97d8e582db7effad73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404190039&rft_id=info:pmid/&rfr_iscdi=true