Loading…

Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature

S-Doped biomorphic SnO2 was synthesized using biomass carbon as a template, where the biomorphic SnO2 adopts the morphology of the biomass. After the in situ growth of hexagonal or semi-hexagonal SnS2 on biomorphic SnO2, the structure of the bio-template was retained. This method is simple, eco-frie...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry frontiers 2020-05, Vol.7 (10), p.2031-2042
Main Authors: Li, Wenna, Lang, He, Bai, Xue, Liu, Lujia, Ikram, Muhammad, He, Lv, Ullah, Mohib, Khan, Mawaz, Kan, Kan, Shi, Keying
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2042
container_issue 10
container_start_page 2031
container_title Inorganic chemistry frontiers
container_volume 7
creator Li, Wenna
Lang, He
Bai, Xue
Liu, Lujia
Ikram, Muhammad
He, Lv
Ullah, Mohib
Khan, Mawaz
Kan, Kan
Shi, Keying
description S-Doped biomorphic SnO2 was synthesized using biomass carbon as a template, where the biomorphic SnO2 adopts the morphology of the biomass. After the in situ growth of hexagonal or semi-hexagonal SnS2 on biomorphic SnO2, the structure of the bio-template was retained. This method is simple, eco-friendly, and cost-effective. The S-termination of SnS2 can effectively react with NO2 and thereby improve the gas sensing performance. As expected, the gas sensing performance significantly increased. The S-doped biomorphic SnO2 shows an excellent response to 100 ppm NO2 (∼57.38), a fast response time (∼1.60 s), and a low detection limit of as low as 10 ppb at room temperature (RT). The gas sensing performance exhibited strong dependence on the number of S–Sn–O chemical bonds. S–Sn–O chemical bonds can be regarded as bridges for electron transport. Chemical bonds reduced the interface state density and increased the carrier density, resulting in more chemisorbed oxygen and led to more NO2 reacting with the S-BCS-600 sensor at RT.
doi_str_mv 10.1039/d0qi00119h
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2404260128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404260128</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-5251fb8558bc1ec57bf75f2e6ed663d6dba2368b2301e308db8695ba058f6e143</originalsourceid><addsrcrecordid>eNo9jUtLAzEcxIMoWLQXP0HA82oemzR7lFIfUOyhei55_NONuMk2SfXoV3dF8TTD_IYZhK4ouaGEd7eOHAIhlHb9CZoxIlhDheCn_74V52heSjBkCkhHyWKGvlax19GCw88bhgvEEuIej5B9ysMPwMnjbePSOFVMSEPKYx8s3sap_hlqj0O0GXSZsLY1fAAuoULBOjpse533gGvWsXjIWFecUxpwhWF60PWY4RKdef1eYP6nF-j1fvWyfGzWm4en5d26GanitRFMUG-UEMpYClYsjF8Iz0CCk5I76YxmXCrDOKHAiXJGyU4YTYTyEmjLL9D17-6Y0-EIpe7e0jHH6XLHWtIySShT_BtD12I7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404260128</pqid></control><display><type>article</type><title>Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature</title><source>Royal Society of Chemistry Journals</source><creator>Li, Wenna ; Lang, He ; Bai, Xue ; Liu, Lujia ; Ikram, Muhammad ; He, Lv ; Ullah, Mohib ; Khan, Mawaz ; Kan, Kan ; Shi, Keying</creator><creatorcontrib>Li, Wenna ; Lang, He ; Bai, Xue ; Liu, Lujia ; Ikram, Muhammad ; He, Lv ; Ullah, Mohib ; Khan, Mawaz ; Kan, Kan ; Shi, Keying</creatorcontrib><description>S-Doped biomorphic SnO2 was synthesized using biomass carbon as a template, where the biomorphic SnO2 adopts the morphology of the biomass. After the in situ growth of hexagonal or semi-hexagonal SnS2 on biomorphic SnO2, the structure of the bio-template was retained. This method is simple, eco-friendly, and cost-effective. The S-termination of SnS2 can effectively react with NO2 and thereby improve the gas sensing performance. As expected, the gas sensing performance significantly increased. The S-doped biomorphic SnO2 shows an excellent response to 100 ppm NO2 (∼57.38), a fast response time (∼1.60 s), and a low detection limit of as low as 10 ppb at room temperature (RT). The gas sensing performance exhibited strong dependence on the number of S–Sn–O chemical bonds. S–Sn–O chemical bonds can be regarded as bridges for electron transport. Chemical bonds reduced the interface state density and increased the carrier density, resulting in more chemisorbed oxygen and led to more NO2 reacting with the S-BCS-600 sensor at RT.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d0qi00119h</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Biomass ; Bonding strength ; Carrier density ; Charge transfer ; Chemical bonds ; Detection ; Electron transport ; Gas sensors ; Inorganic chemistry ; Morphology ; Nitrogen dioxide ; Response time ; Room temperature ; Tin dioxide ; Tin disulfide</subject><ispartof>Inorganic chemistry frontiers, 2020-05, Vol.7 (10), p.2031-2042</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Wenna</creatorcontrib><creatorcontrib>Lang, He</creatorcontrib><creatorcontrib>Bai, Xue</creatorcontrib><creatorcontrib>Liu, Lujia</creatorcontrib><creatorcontrib>Ikram, Muhammad</creatorcontrib><creatorcontrib>He, Lv</creatorcontrib><creatorcontrib>Ullah, Mohib</creatorcontrib><creatorcontrib>Khan, Mawaz</creatorcontrib><creatorcontrib>Kan, Kan</creatorcontrib><creatorcontrib>Shi, Keying</creatorcontrib><title>Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature</title><title>Inorganic chemistry frontiers</title><description>S-Doped biomorphic SnO2 was synthesized using biomass carbon as a template, where the biomorphic SnO2 adopts the morphology of the biomass. After the in situ growth of hexagonal or semi-hexagonal SnS2 on biomorphic SnO2, the structure of the bio-template was retained. This method is simple, eco-friendly, and cost-effective. The S-termination of SnS2 can effectively react with NO2 and thereby improve the gas sensing performance. As expected, the gas sensing performance significantly increased. The S-doped biomorphic SnO2 shows an excellent response to 100 ppm NO2 (∼57.38), a fast response time (∼1.60 s), and a low detection limit of as low as 10 ppb at room temperature (RT). The gas sensing performance exhibited strong dependence on the number of S–Sn–O chemical bonds. S–Sn–O chemical bonds can be regarded as bridges for electron transport. Chemical bonds reduced the interface state density and increased the carrier density, resulting in more chemisorbed oxygen and led to more NO2 reacting with the S-BCS-600 sensor at RT.</description><subject>Biomass</subject><subject>Bonding strength</subject><subject>Carrier density</subject><subject>Charge transfer</subject><subject>Chemical bonds</subject><subject>Detection</subject><subject>Electron transport</subject><subject>Gas sensors</subject><subject>Inorganic chemistry</subject><subject>Morphology</subject><subject>Nitrogen dioxide</subject><subject>Response time</subject><subject>Room temperature</subject><subject>Tin dioxide</subject><subject>Tin disulfide</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9jUtLAzEcxIMoWLQXP0HA82oemzR7lFIfUOyhei55_NONuMk2SfXoV3dF8TTD_IYZhK4ouaGEd7eOHAIhlHb9CZoxIlhDheCn_74V52heSjBkCkhHyWKGvlax19GCw88bhgvEEuIej5B9ysMPwMnjbePSOFVMSEPKYx8s3sap_hlqj0O0GXSZsLY1fAAuoULBOjpse533gGvWsXjIWFecUxpwhWF60PWY4RKdef1eYP6nF-j1fvWyfGzWm4en5d26GanitRFMUG-UEMpYClYsjF8Iz0CCk5I76YxmXCrDOKHAiXJGyU4YTYTyEmjLL9D17-6Y0-EIpe7e0jHH6XLHWtIySShT_BtD12I7</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Li, Wenna</creator><creator>Lang, He</creator><creator>Bai, Xue</creator><creator>Liu, Lujia</creator><creator>Ikram, Muhammad</creator><creator>He, Lv</creator><creator>Ullah, Mohib</creator><creator>Khan, Mawaz</creator><creator>Kan, Kan</creator><creator>Shi, Keying</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200521</creationdate><title>Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature</title><author>Li, Wenna ; Lang, He ; Bai, Xue ; Liu, Lujia ; Ikram, Muhammad ; He, Lv ; Ullah, Mohib ; Khan, Mawaz ; Kan, Kan ; Shi, Keying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-5251fb8558bc1ec57bf75f2e6ed663d6dba2368b2301e308db8695ba058f6e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomass</topic><topic>Bonding strength</topic><topic>Carrier density</topic><topic>Charge transfer</topic><topic>Chemical bonds</topic><topic>Detection</topic><topic>Electron transport</topic><topic>Gas sensors</topic><topic>Inorganic chemistry</topic><topic>Morphology</topic><topic>Nitrogen dioxide</topic><topic>Response time</topic><topic>Room temperature</topic><topic>Tin dioxide</topic><topic>Tin disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenna</creatorcontrib><creatorcontrib>Lang, He</creatorcontrib><creatorcontrib>Bai, Xue</creatorcontrib><creatorcontrib>Liu, Lujia</creatorcontrib><creatorcontrib>Ikram, Muhammad</creatorcontrib><creatorcontrib>He, Lv</creatorcontrib><creatorcontrib>Ullah, Mohib</creatorcontrib><creatorcontrib>Khan, Mawaz</creatorcontrib><creatorcontrib>Kan, Kan</creatorcontrib><creatorcontrib>Shi, Keying</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenna</au><au>Lang, He</au><au>Bai, Xue</au><au>Liu, Lujia</au><au>Ikram, Muhammad</au><au>He, Lv</au><au>Ullah, Mohib</au><au>Khan, Mawaz</au><au>Kan, Kan</au><au>Shi, Keying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2020-05-21</date><risdate>2020</risdate><volume>7</volume><issue>10</issue><spage>2031</spage><epage>2042</epage><pages>2031-2042</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>S-Doped biomorphic SnO2 was synthesized using biomass carbon as a template, where the biomorphic SnO2 adopts the morphology of the biomass. After the in situ growth of hexagonal or semi-hexagonal SnS2 on biomorphic SnO2, the structure of the bio-template was retained. This method is simple, eco-friendly, and cost-effective. The S-termination of SnS2 can effectively react with NO2 and thereby improve the gas sensing performance. As expected, the gas sensing performance significantly increased. The S-doped biomorphic SnO2 shows an excellent response to 100 ppm NO2 (∼57.38), a fast response time (∼1.60 s), and a low detection limit of as low as 10 ppb at room temperature (RT). The gas sensing performance exhibited strong dependence on the number of S–Sn–O chemical bonds. S–Sn–O chemical bonds can be regarded as bridges for electron transport. Chemical bonds reduced the interface state density and increased the carrier density, resulting in more chemisorbed oxygen and led to more NO2 reacting with the S-BCS-600 sensor at RT.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0qi00119h</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2052-1545
ispartof Inorganic chemistry frontiers, 2020-05, Vol.7 (10), p.2031-2042
issn 2052-1545
2052-1553
language eng
recordid cdi_proquest_journals_2404260128
source Royal Society of Chemistry Journals
subjects Biomass
Bonding strength
Carrier density
Charge transfer
Chemical bonds
Detection
Electron transport
Gas sensors
Inorganic chemistry
Morphology
Nitrogen dioxide
Response time
Room temperature
Tin dioxide
Tin disulfide
title Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20NO2%20sensing%20performance%20of%20S-doped%20biomorphic%20SnO2%20with%20increased%20active%20sites%20and%20charge%20transfer%20at%20room%20temperature&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Li,%20Wenna&rft.date=2020-05-21&rft.volume=7&rft.issue=10&rft.spage=2031&rft.epage=2042&rft.pages=2031-2042&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d0qi00119h&rft_dat=%3Cproquest%3E2404260128%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-5251fb8558bc1ec57bf75f2e6ed663d6dba2368b2301e308db8695ba058f6e143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404260128&rft_id=info:pmid/&rfr_iscdi=true