Loading…
Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature
S-Doped biomorphic SnO2 was synthesized using biomass carbon as a template, where the biomorphic SnO2 adopts the morphology of the biomass. After the in situ growth of hexagonal or semi-hexagonal SnS2 on biomorphic SnO2, the structure of the bio-template was retained. This method is simple, eco-frie...
Saved in:
Published in: | Inorganic chemistry frontiers 2020-05, Vol.7 (10), p.2031-2042 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2042 |
container_issue | 10 |
container_start_page | 2031 |
container_title | Inorganic chemistry frontiers |
container_volume | 7 |
creator | Li, Wenna Lang, He Bai, Xue Liu, Lujia Ikram, Muhammad He, Lv Ullah, Mohib Khan, Mawaz Kan, Kan Shi, Keying |
description | S-Doped biomorphic SnO2 was synthesized using biomass carbon as a template, where the biomorphic SnO2 adopts the morphology of the biomass. After the in situ growth of hexagonal or semi-hexagonal SnS2 on biomorphic SnO2, the structure of the bio-template was retained. This method is simple, eco-friendly, and cost-effective. The S-termination of SnS2 can effectively react with NO2 and thereby improve the gas sensing performance. As expected, the gas sensing performance significantly increased. The S-doped biomorphic SnO2 shows an excellent response to 100 ppm NO2 (∼57.38), a fast response time (∼1.60 s), and a low detection limit of as low as 10 ppb at room temperature (RT). The gas sensing performance exhibited strong dependence on the number of S–Sn–O chemical bonds. S–Sn–O chemical bonds can be regarded as bridges for electron transport. Chemical bonds reduced the interface state density and increased the carrier density, resulting in more chemisorbed oxygen and led to more NO2 reacting with the S-BCS-600 sensor at RT. |
doi_str_mv | 10.1039/d0qi00119h |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2404260128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404260128</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-5251fb8558bc1ec57bf75f2e6ed663d6dba2368b2301e308db8695ba058f6e143</originalsourceid><addsrcrecordid>eNo9jUtLAzEcxIMoWLQXP0HA82oemzR7lFIfUOyhei55_NONuMk2SfXoV3dF8TTD_IYZhK4ouaGEd7eOHAIhlHb9CZoxIlhDheCn_74V52heSjBkCkhHyWKGvlax19GCw88bhgvEEuIej5B9ysMPwMnjbePSOFVMSEPKYx8s3sap_hlqj0O0GXSZsLY1fAAuoULBOjpse533gGvWsXjIWFecUxpwhWF60PWY4RKdef1eYP6nF-j1fvWyfGzWm4en5d26GanitRFMUG-UEMpYClYsjF8Iz0CCk5I76YxmXCrDOKHAiXJGyU4YTYTyEmjLL9D17-6Y0-EIpe7e0jHH6XLHWtIySShT_BtD12I7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404260128</pqid></control><display><type>article</type><title>Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature</title><source>Royal Society of Chemistry Journals</source><creator>Li, Wenna ; Lang, He ; Bai, Xue ; Liu, Lujia ; Ikram, Muhammad ; He, Lv ; Ullah, Mohib ; Khan, Mawaz ; Kan, Kan ; Shi, Keying</creator><creatorcontrib>Li, Wenna ; Lang, He ; Bai, Xue ; Liu, Lujia ; Ikram, Muhammad ; He, Lv ; Ullah, Mohib ; Khan, Mawaz ; Kan, Kan ; Shi, Keying</creatorcontrib><description>S-Doped biomorphic SnO2 was synthesized using biomass carbon as a template, where the biomorphic SnO2 adopts the morphology of the biomass. After the in situ growth of hexagonal or semi-hexagonal SnS2 on biomorphic SnO2, the structure of the bio-template was retained. This method is simple, eco-friendly, and cost-effective. The S-termination of SnS2 can effectively react with NO2 and thereby improve the gas sensing performance. As expected, the gas sensing performance significantly increased. The S-doped biomorphic SnO2 shows an excellent response to 100 ppm NO2 (∼57.38), a fast response time (∼1.60 s), and a low detection limit of as low as 10 ppb at room temperature (RT). The gas sensing performance exhibited strong dependence on the number of S–Sn–O chemical bonds. S–Sn–O chemical bonds can be regarded as bridges for electron transport. Chemical bonds reduced the interface state density and increased the carrier density, resulting in more chemisorbed oxygen and led to more NO2 reacting with the S-BCS-600 sensor at RT.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d0qi00119h</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Biomass ; Bonding strength ; Carrier density ; Charge transfer ; Chemical bonds ; Detection ; Electron transport ; Gas sensors ; Inorganic chemistry ; Morphology ; Nitrogen dioxide ; Response time ; Room temperature ; Tin dioxide ; Tin disulfide</subject><ispartof>Inorganic chemistry frontiers, 2020-05, Vol.7 (10), p.2031-2042</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Wenna</creatorcontrib><creatorcontrib>Lang, He</creatorcontrib><creatorcontrib>Bai, Xue</creatorcontrib><creatorcontrib>Liu, Lujia</creatorcontrib><creatorcontrib>Ikram, Muhammad</creatorcontrib><creatorcontrib>He, Lv</creatorcontrib><creatorcontrib>Ullah, Mohib</creatorcontrib><creatorcontrib>Khan, Mawaz</creatorcontrib><creatorcontrib>Kan, Kan</creatorcontrib><creatorcontrib>Shi, Keying</creatorcontrib><title>Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature</title><title>Inorganic chemistry frontiers</title><description>S-Doped biomorphic SnO2 was synthesized using biomass carbon as a template, where the biomorphic SnO2 adopts the morphology of the biomass. After the in situ growth of hexagonal or semi-hexagonal SnS2 on biomorphic SnO2, the structure of the bio-template was retained. This method is simple, eco-friendly, and cost-effective. The S-termination of SnS2 can effectively react with NO2 and thereby improve the gas sensing performance. As expected, the gas sensing performance significantly increased. The S-doped biomorphic SnO2 shows an excellent response to 100 ppm NO2 (∼57.38), a fast response time (∼1.60 s), and a low detection limit of as low as 10 ppb at room temperature (RT). The gas sensing performance exhibited strong dependence on the number of S–Sn–O chemical bonds. S–Sn–O chemical bonds can be regarded as bridges for electron transport. Chemical bonds reduced the interface state density and increased the carrier density, resulting in more chemisorbed oxygen and led to more NO2 reacting with the S-BCS-600 sensor at RT.</description><subject>Biomass</subject><subject>Bonding strength</subject><subject>Carrier density</subject><subject>Charge transfer</subject><subject>Chemical bonds</subject><subject>Detection</subject><subject>Electron transport</subject><subject>Gas sensors</subject><subject>Inorganic chemistry</subject><subject>Morphology</subject><subject>Nitrogen dioxide</subject><subject>Response time</subject><subject>Room temperature</subject><subject>Tin dioxide</subject><subject>Tin disulfide</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9jUtLAzEcxIMoWLQXP0HA82oemzR7lFIfUOyhei55_NONuMk2SfXoV3dF8TTD_IYZhK4ouaGEd7eOHAIhlHb9CZoxIlhDheCn_74V52heSjBkCkhHyWKGvlax19GCw88bhgvEEuIej5B9ysMPwMnjbePSOFVMSEPKYx8s3sap_hlqj0O0GXSZsLY1fAAuoULBOjpse533gGvWsXjIWFecUxpwhWF60PWY4RKdef1eYP6nF-j1fvWyfGzWm4en5d26GanitRFMUG-UEMpYClYsjF8Iz0CCk5I76YxmXCrDOKHAiXJGyU4YTYTyEmjLL9D17-6Y0-EIpe7e0jHH6XLHWtIySShT_BtD12I7</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Li, Wenna</creator><creator>Lang, He</creator><creator>Bai, Xue</creator><creator>Liu, Lujia</creator><creator>Ikram, Muhammad</creator><creator>He, Lv</creator><creator>Ullah, Mohib</creator><creator>Khan, Mawaz</creator><creator>Kan, Kan</creator><creator>Shi, Keying</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200521</creationdate><title>Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature</title><author>Li, Wenna ; Lang, He ; Bai, Xue ; Liu, Lujia ; Ikram, Muhammad ; He, Lv ; Ullah, Mohib ; Khan, Mawaz ; Kan, Kan ; Shi, Keying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-5251fb8558bc1ec57bf75f2e6ed663d6dba2368b2301e308db8695ba058f6e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomass</topic><topic>Bonding strength</topic><topic>Carrier density</topic><topic>Charge transfer</topic><topic>Chemical bonds</topic><topic>Detection</topic><topic>Electron transport</topic><topic>Gas sensors</topic><topic>Inorganic chemistry</topic><topic>Morphology</topic><topic>Nitrogen dioxide</topic><topic>Response time</topic><topic>Room temperature</topic><topic>Tin dioxide</topic><topic>Tin disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenna</creatorcontrib><creatorcontrib>Lang, He</creatorcontrib><creatorcontrib>Bai, Xue</creatorcontrib><creatorcontrib>Liu, Lujia</creatorcontrib><creatorcontrib>Ikram, Muhammad</creatorcontrib><creatorcontrib>He, Lv</creatorcontrib><creatorcontrib>Ullah, Mohib</creatorcontrib><creatorcontrib>Khan, Mawaz</creatorcontrib><creatorcontrib>Kan, Kan</creatorcontrib><creatorcontrib>Shi, Keying</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenna</au><au>Lang, He</au><au>Bai, Xue</au><au>Liu, Lujia</au><au>Ikram, Muhammad</au><au>He, Lv</au><au>Ullah, Mohib</au><au>Khan, Mawaz</au><au>Kan, Kan</au><au>Shi, Keying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2020-05-21</date><risdate>2020</risdate><volume>7</volume><issue>10</issue><spage>2031</spage><epage>2042</epage><pages>2031-2042</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>S-Doped biomorphic SnO2 was synthesized using biomass carbon as a template, where the biomorphic SnO2 adopts the morphology of the biomass. After the in situ growth of hexagonal or semi-hexagonal SnS2 on biomorphic SnO2, the structure of the bio-template was retained. This method is simple, eco-friendly, and cost-effective. The S-termination of SnS2 can effectively react with NO2 and thereby improve the gas sensing performance. As expected, the gas sensing performance significantly increased. The S-doped biomorphic SnO2 shows an excellent response to 100 ppm NO2 (∼57.38), a fast response time (∼1.60 s), and a low detection limit of as low as 10 ppb at room temperature (RT). The gas sensing performance exhibited strong dependence on the number of S–Sn–O chemical bonds. S–Sn–O chemical bonds can be regarded as bridges for electron transport. Chemical bonds reduced the interface state density and increased the carrier density, resulting in more chemisorbed oxygen and led to more NO2 reacting with the S-BCS-600 sensor at RT.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0qi00119h</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-1545 |
ispartof | Inorganic chemistry frontiers, 2020-05, Vol.7 (10), p.2031-2042 |
issn | 2052-1545 2052-1553 |
language | eng |
recordid | cdi_proquest_journals_2404260128 |
source | Royal Society of Chemistry Journals |
subjects | Biomass Bonding strength Carrier density Charge transfer Chemical bonds Detection Electron transport Gas sensors Inorganic chemistry Morphology Nitrogen dioxide Response time Room temperature Tin dioxide Tin disulfide |
title | Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20NO2%20sensing%20performance%20of%20S-doped%20biomorphic%20SnO2%20with%20increased%20active%20sites%20and%20charge%20transfer%20at%20room%20temperature&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Li,%20Wenna&rft.date=2020-05-21&rft.volume=7&rft.issue=10&rft.spage=2031&rft.epage=2042&rft.pages=2031-2042&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d0qi00119h&rft_dat=%3Cproquest%3E2404260128%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-5251fb8558bc1ec57bf75f2e6ed663d6dba2368b2301e308db8695ba058f6e143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404260128&rft_id=info:pmid/&rfr_iscdi=true |