Loading…
Learning pairing symmetries in disordered superconductors using spin-polarized local density of states
We construct an artificial neural network to study the pairing symmetries in disordered superconductors. For Hamiltonians on square lattice with s-wave, d-wave, and nematic pairing potentials, we use the spin-polarized local density of states near a magnetic impurity in the clean system to train the...
Saved in:
Published in: | New journal of physics 2020-05, Vol.22 (5), p.53015 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We construct an artificial neural network to study the pairing symmetries in disordered superconductors. For Hamiltonians on square lattice with s-wave, d-wave, and nematic pairing potentials, we use the spin-polarized local density of states near a magnetic impurity in the clean system to train the neural network. We find that, when the depth of the artificial neural network is sufficient large, it will have the power to predict the pairing symmetries in disordered superconductors. In a large parameter regime of the potential disorder, the artificial neural network predicts the correct pairing symmetries with relatively high confidences. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/ab8261 |