Loading…
Accelerated testing method to estimate the long‐term hydrostatic strength of semi‐crystalline plastic pipes
The ability to quickly develop predictions of the service lifetime of plastic pipes at different load levels allows designers to choose the best plastic material and design pipe for a specific application. Additionally, it helps material producers to rapidly design, manufacture, test, screen, and mo...
Saved in:
Published in: | Polymer engineering and science 2020-05, Vol.60 (5), p.879-888 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5107-b117db3718b34a238336ef09ee3692a00e5589ef90c41c7b3f7f216b11984df13 |
---|---|
cites | cdi_FETCH-LOGICAL-c5107-b117db3718b34a238336ef09ee3692a00e5589ef90c41c7b3f7f216b11984df13 |
container_end_page | 888 |
container_issue | 5 |
container_start_page | 879 |
container_title | Polymer engineering and science |
container_volume | 60 |
creator | Taherzadehboroujeni, Mehrzad Kalhor, Roozbeh Fahs, Gregory B. Moore, Robert B. Case, Scott W. |
description | The ability to quickly develop predictions of the service lifetime of plastic pipes at different load levels allows designers to choose the best plastic material and design pipe for a specific application. Additionally, it helps material producers to rapidly design, manufacture, test, screen, and modify the base polymeric material. The aim of this study is to introduce a combined experimental and analytical framework to develop accelerated lifetime estimates for semi‐crystalline plastic pipes which is sensitive to the structure, orientation, and morphology changes introduced by changing processing conditions. To accomplish this task, high density polyethylene (HDPE) is chosen as the exemplary base material and custom fixtures are developed to admit tensile and hoop burst tests on the as‐manufactured HDPE pipes. A pressure‐modified Eyring flow equation is employed to predict the rupture lifetime of HDPE pipes using the measured mechanical properties under uniaxial tensile and compression loading in different temperatures and strain rates. The method allows the prediction of pipe service lifetimes in excess of 50 years using experiments conducted over approximately 10 days instead of the traditional 13 months. POLYM. ENG. SCI., 60:879–888, 2020. © 2019 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.25087 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2404454302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627001529</galeid><sourcerecordid>A627001529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5107-b117db3718b34a238336ef09ee3692a00e5589ef90c41c7b3f7f216b11984df13</originalsourceid><addsrcrecordid>eNp1ktuKFDEQhoMoOO564RsEvBLs2Zz6dDks67qw6OLhOqTTle4sfTLJsM7dPoLP6JNY44g4MBJISNX3V5I_RcgrztacMXGxwLQWOavKJ2TFc1VlopDqKVkxJkUmq6p6Tl7EeM-QlXm9IvPGWhggmAQtTRCTnzo6Qupn3M50HxgxR1MPdJin7ufjjwRhpP2uDXNMJnlLYwowdamns6MRRo-MDTtMDoOfgC6DiXts8QvEc_LMmSHCyz_rGfn67urL5fvs9uP1zeXmNrM5Z2XWcF62jSx51UhlhKykLMCxGkAWtTCMQZ5XNbiaWcVt2UhXOsELlNWVah2XZ-T1oe4S5m9bfIa-n7dhwiO1UEypXEl04C_VmQG0n9ycgrGjj1ZvClEyxnNRI5WdoDqY0Db0BJzH8BG_PsHjaNEce1Lw5kiATILvqTPbGPXN50_H7Nt_2GYb0eKIU_Rdn-JBcqq0xe-KAZxeAv5o2GnO9L5jNHaM_t0xyF4c2Ae83-7_oL67-nBQ_AJpHMIf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404454302</pqid></control><display><type>article</type><title>Accelerated testing method to estimate the long‐term hydrostatic strength of semi‐crystalline plastic pipes</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Taherzadehboroujeni, Mehrzad ; Kalhor, Roozbeh ; Fahs, Gregory B. ; Moore, Robert B. ; Case, Scott W.</creator><creatorcontrib>Taherzadehboroujeni, Mehrzad ; Kalhor, Roozbeh ; Fahs, Gregory B. ; Moore, Robert B. ; Case, Scott W.</creatorcontrib><description>The ability to quickly develop predictions of the service lifetime of plastic pipes at different load levels allows designers to choose the best plastic material and design pipe for a specific application. Additionally, it helps material producers to rapidly design, manufacture, test, screen, and modify the base polymeric material. The aim of this study is to introduce a combined experimental and analytical framework to develop accelerated lifetime estimates for semi‐crystalline plastic pipes which is sensitive to the structure, orientation, and morphology changes introduced by changing processing conditions. To accomplish this task, high density polyethylene (HDPE) is chosen as the exemplary base material and custom fixtures are developed to admit tensile and hoop burst tests on the as‐manufactured HDPE pipes. A pressure‐modified Eyring flow equation is employed to predict the rupture lifetime of HDPE pipes using the measured mechanical properties under uniaxial tensile and compression loading in different temperatures and strain rates. The method allows the prediction of pipe service lifetimes in excess of 50 years using experiments conducted over approximately 10 days instead of the traditional 13 months. POLYM. ENG. SCI., 60:879–888, 2020. © 2019 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25087</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Accelerated tests ; Burst tests ; Compression loads ; Compression tests ; Crystal structure ; Crystallinity ; Design ; Design modifications ; Fixtures ; Flow equations ; High density polyethylenes ; Lifetime ; Mechanical properties ; Methods ; Morphology ; Pipes ; Plastic products ; Polyethylene ; Polymers ; Service life</subject><ispartof>Polymer engineering and science, 2020-05, Vol.60 (5), p.879-888</ispartof><rights>2019 Society of Plastics Engineers</rights><rights>COPYRIGHT 2020 Society of Plastics Engineers, Inc.</rights><rights>2020 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5107-b117db3718b34a238336ef09ee3692a00e5589ef90c41c7b3f7f216b11984df13</citedby><cites>FETCH-LOGICAL-c5107-b117db3718b34a238336ef09ee3692a00e5589ef90c41c7b3f7f216b11984df13</cites><orcidid>0000-0002-0471-329X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Taherzadehboroujeni, Mehrzad</creatorcontrib><creatorcontrib>Kalhor, Roozbeh</creatorcontrib><creatorcontrib>Fahs, Gregory B.</creatorcontrib><creatorcontrib>Moore, Robert B.</creatorcontrib><creatorcontrib>Case, Scott W.</creatorcontrib><title>Accelerated testing method to estimate the long‐term hydrostatic strength of semi‐crystalline plastic pipes</title><title>Polymer engineering and science</title><description>The ability to quickly develop predictions of the service lifetime of plastic pipes at different load levels allows designers to choose the best plastic material and design pipe for a specific application. Additionally, it helps material producers to rapidly design, manufacture, test, screen, and modify the base polymeric material. The aim of this study is to introduce a combined experimental and analytical framework to develop accelerated lifetime estimates for semi‐crystalline plastic pipes which is sensitive to the structure, orientation, and morphology changes introduced by changing processing conditions. To accomplish this task, high density polyethylene (HDPE) is chosen as the exemplary base material and custom fixtures are developed to admit tensile and hoop burst tests on the as‐manufactured HDPE pipes. A pressure‐modified Eyring flow equation is employed to predict the rupture lifetime of HDPE pipes using the measured mechanical properties under uniaxial tensile and compression loading in different temperatures and strain rates. The method allows the prediction of pipe service lifetimes in excess of 50 years using experiments conducted over approximately 10 days instead of the traditional 13 months. POLYM. ENG. SCI., 60:879–888, 2020. © 2019 Society of Plastics Engineers</description><subject>Accelerated tests</subject><subject>Burst tests</subject><subject>Compression loads</subject><subject>Compression tests</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Design</subject><subject>Design modifications</subject><subject>Fixtures</subject><subject>Flow equations</subject><subject>High density polyethylenes</subject><subject>Lifetime</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Morphology</subject><subject>Pipes</subject><subject>Plastic products</subject><subject>Polyethylene</subject><subject>Polymers</subject><subject>Service life</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1ktuKFDEQhoMoOO564RsEvBLs2Zz6dDks67qw6OLhOqTTle4sfTLJsM7dPoLP6JNY44g4MBJISNX3V5I_RcgrztacMXGxwLQWOavKJ2TFc1VlopDqKVkxJkUmq6p6Tl7EeM-QlXm9IvPGWhggmAQtTRCTnzo6Qupn3M50HxgxR1MPdJin7ufjjwRhpP2uDXNMJnlLYwowdamns6MRRo-MDTtMDoOfgC6DiXts8QvEc_LMmSHCyz_rGfn67urL5fvs9uP1zeXmNrM5Z2XWcF62jSx51UhlhKykLMCxGkAWtTCMQZ5XNbiaWcVt2UhXOsELlNWVah2XZ-T1oe4S5m9bfIa-n7dhwiO1UEypXEl04C_VmQG0n9ycgrGjj1ZvClEyxnNRI5WdoDqY0Db0BJzH8BG_PsHjaNEce1Lw5kiATILvqTPbGPXN50_H7Nt_2GYb0eKIU_Rdn-JBcqq0xe-KAZxeAv5o2GnO9L5jNHaM_t0xyF4c2Ae83-7_oL67-nBQ_AJpHMIf</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Taherzadehboroujeni, Mehrzad</creator><creator>Kalhor, Roozbeh</creator><creator>Fahs, Gregory B.</creator><creator>Moore, Robert B.</creator><creator>Case, Scott W.</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0471-329X</orcidid></search><sort><creationdate>202005</creationdate><title>Accelerated testing method to estimate the long‐term hydrostatic strength of semi‐crystalline plastic pipes</title><author>Taherzadehboroujeni, Mehrzad ; Kalhor, Roozbeh ; Fahs, Gregory B. ; Moore, Robert B. ; Case, Scott W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5107-b117db3718b34a238336ef09ee3692a00e5589ef90c41c7b3f7f216b11984df13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated tests</topic><topic>Burst tests</topic><topic>Compression loads</topic><topic>Compression tests</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Design</topic><topic>Design modifications</topic><topic>Fixtures</topic><topic>Flow equations</topic><topic>High density polyethylenes</topic><topic>Lifetime</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Morphology</topic><topic>Pipes</topic><topic>Plastic products</topic><topic>Polyethylene</topic><topic>Polymers</topic><topic>Service life</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taherzadehboroujeni, Mehrzad</creatorcontrib><creatorcontrib>Kalhor, Roozbeh</creatorcontrib><creatorcontrib>Fahs, Gregory B.</creatorcontrib><creatorcontrib>Moore, Robert B.</creatorcontrib><creatorcontrib>Case, Scott W.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taherzadehboroujeni, Mehrzad</au><au>Kalhor, Roozbeh</au><au>Fahs, Gregory B.</au><au>Moore, Robert B.</au><au>Case, Scott W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated testing method to estimate the long‐term hydrostatic strength of semi‐crystalline plastic pipes</atitle><jtitle>Polymer engineering and science</jtitle><date>2020-05</date><risdate>2020</risdate><volume>60</volume><issue>5</issue><spage>879</spage><epage>888</epage><pages>879-888</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>The ability to quickly develop predictions of the service lifetime of plastic pipes at different load levels allows designers to choose the best plastic material and design pipe for a specific application. Additionally, it helps material producers to rapidly design, manufacture, test, screen, and modify the base polymeric material. The aim of this study is to introduce a combined experimental and analytical framework to develop accelerated lifetime estimates for semi‐crystalline plastic pipes which is sensitive to the structure, orientation, and morphology changes introduced by changing processing conditions. To accomplish this task, high density polyethylene (HDPE) is chosen as the exemplary base material and custom fixtures are developed to admit tensile and hoop burst tests on the as‐manufactured HDPE pipes. A pressure‐modified Eyring flow equation is employed to predict the rupture lifetime of HDPE pipes using the measured mechanical properties under uniaxial tensile and compression loading in different temperatures and strain rates. The method allows the prediction of pipe service lifetimes in excess of 50 years using experiments conducted over approximately 10 days instead of the traditional 13 months. POLYM. ENG. SCI., 60:879–888, 2020. © 2019 Society of Plastics Engineers</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.25087</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0471-329X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2020-05, Vol.60 (5), p.879-888 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_2404454302 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Accelerated tests Burst tests Compression loads Compression tests Crystal structure Crystallinity Design Design modifications Fixtures Flow equations High density polyethylenes Lifetime Mechanical properties Methods Morphology Pipes Plastic products Polyethylene Polymers Service life |
title | Accelerated testing method to estimate the long‐term hydrostatic strength of semi‐crystalline plastic pipes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20testing%20method%20to%20estimate%20the%20long%E2%80%90term%20hydrostatic%20strength%20of%20semi%E2%80%90crystalline%20plastic%20pipes&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Taherzadehboroujeni,%20Mehrzad&rft.date=2020-05&rft.volume=60&rft.issue=5&rft.spage=879&rft.epage=888&rft.pages=879-888&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25087&rft_dat=%3Cgale_proqu%3EA627001529%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5107-b117db3718b34a238336ef09ee3692a00e5589ef90c41c7b3f7f216b11984df13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404454302&rft_id=info:pmid/&rft_galeid=A627001529&rfr_iscdi=true |