Loading…
Broadband free space impedance in Co2Z hexaferrites by substitution of high valency heavy transition metal ions for miniaturized RF devices
Polycrystalline samples of Z-type hexaferrites, having nominal compositions Ba3Co2+xFe24−2xMxO41, where M = Ir, Hf, or Mo and x = 0 and 0.05, were processed via ceramic protocols in pursuit of low magnetic and dielectric losses, as well as equivalent permittivity and permeability over the VHF–UHF ba...
Saved in:
Published in: | Applied physics letters 2020-05, Vol.116 (20) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c308t-1f87c590b0ee275a133ecb8addd0f626c45580940e62dc4f0666bce8c40609203 |
---|---|
cites | cdi_FETCH-LOGICAL-c308t-1f87c590b0ee275a133ecb8addd0f626c45580940e62dc4f0666bce8c40609203 |
container_end_page | |
container_issue | 20 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 116 |
creator | Kulik, Piotr Winter, Gavin Sokolov, Alexander Murphy, Katherine Yu, Chengju Qian, Kun Fitchorova, Ogheneyunume Harris, Vincent G. |
description | Polycrystalline samples of Z-type hexaferrites, having nominal compositions Ba3Co2+xFe24−2xMxO41, where M = Ir, Hf, or Mo and x = 0 and 0.05, were processed via ceramic protocols in pursuit of low magnetic and dielectric losses, as well as equivalent permittivity and permeability over the VHF–UHF band. Fine process control was conducted to ensure optimal magnetic properties. Organic dispersants, i.e., isobutylene and maleic anhydride, were employed to achieve maximum densities. Crystallographic structure, characterized by x-ray diffraction, revealed that the dopants did not adversely affect the crystal structure and phase purity of the Z-type hexaferrite. An increase in permeability and size reduction factor is shown to be linearly proportional to the ionic radii of the dopants. This trend is consistent with local bonding distortions giving rise to increased exchange energy (J) as predicted by the Goodenough–Kanamori–Anderson rules and superexchange theory. We posit that these distortions increase the magnetocrystalline anisotropy energy affecting the frequency dependent complex permeability. For Mo doping of x = 0.05, a bandwidth of 400 MHz exists at a center frequency of 650 MHz where the permittivity and permeability are very nearly equal, i.e., Z = 377 ± 5 Ω. These results give rise to low loss, i.e., tan
δ
ε
/
ε
′ = 0.0006 and tan
δ
μ
/
μ
′ = 0.038 at 650 MHz, with considerable size reduction (×9). The miniaturization and optimized performance of magnetodielectric materials for antenna at VHF–UHF frequencies using cost-effective and volumetric processing methodologies are demonstrated. |
doi_str_mv | 10.1063/1.5144531 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2404781173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404781173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-1f87c590b0ee275a133ecb8addd0f626c45580940e62dc4f0666bce8c40609203</originalsourceid><addsrcrecordid>eNp90M1KxDAQB_AgCq4fB98g4Emh66Rp0-5RF1cFQRC9eClpMnEju01N0uL6Cr60XVf0IHiaGfgxw_wJOWIwZiD4GRvnLMtyzrbIiEFRJJyxcpuMAIAnYpKzXbIXwssw5innI_Jx4Z3UtWw0NR6RhlYqpHbZopbNumvo1KVPdI5v0qD3NmKg9YqGrg7Rxi5a11Bn6Nw-z2kvF9io1YBlv6LRyybYL7DEKBd06AI1ztOlbayMnbfvqOn9jGrsrcJwQHaMXAQ8_K775HF2-TC9Tm7vrm6m57eJ4lDGhJmyUPkEakBMi1wyzlHVpdRagxGpUFmelzDJAEWqVWZACFErLFUGAiYp8H1yvNnbevfaYYjVi-t8M5ys0gyyomSs4IM62SjlXQgeTdV6u5R-VTGo1llXrPrOerCnGxuUjXL98g_unf-FVavNf_jv5k_lmI6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404781173</pqid></control><display><type>article</type><title>Broadband free space impedance in Co2Z hexaferrites by substitution of high valency heavy transition metal ions for miniaturized RF devices</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Kulik, Piotr ; Winter, Gavin ; Sokolov, Alexander ; Murphy, Katherine ; Yu, Chengju ; Qian, Kun ; Fitchorova, Ogheneyunume ; Harris, Vincent G.</creator><creatorcontrib>Kulik, Piotr ; Winter, Gavin ; Sokolov, Alexander ; Murphy, Katherine ; Yu, Chengju ; Qian, Kun ; Fitchorova, Ogheneyunume ; Harris, Vincent G.</creatorcontrib><description>Polycrystalline samples of Z-type hexaferrites, having nominal compositions Ba3Co2+xFe24−2xMxO41, where M = Ir, Hf, or Mo and x = 0 and 0.05, were processed via ceramic protocols in pursuit of low magnetic and dielectric losses, as well as equivalent permittivity and permeability over the VHF–UHF band. Fine process control was conducted to ensure optimal magnetic properties. Organic dispersants, i.e., isobutylene and maleic anhydride, were employed to achieve maximum densities. Crystallographic structure, characterized by x-ray diffraction, revealed that the dopants did not adversely affect the crystal structure and phase purity of the Z-type hexaferrite. An increase in permeability and size reduction factor is shown to be linearly proportional to the ionic radii of the dopants. This trend is consistent with local bonding distortions giving rise to increased exchange energy (J) as predicted by the Goodenough–Kanamori–Anderson rules and superexchange theory. We posit that these distortions increase the magnetocrystalline anisotropy energy affecting the frequency dependent complex permeability. For Mo doping of x = 0.05, a bandwidth of 400 MHz exists at a center frequency of 650 MHz where the permittivity and permeability are very nearly equal, i.e., Z = 377 ± 5 Ω. These results give rise to low loss, i.e., tan
δ
ε
/
ε
′ = 0.0006 and tan
δ
μ
/
μ
′ = 0.038 at 650 MHz, with considerable size reduction (×9). The miniaturization and optimized performance of magnetodielectric materials for antenna at VHF–UHF frequencies using cost-effective and volumetric processing methodologies are demonstrated.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5144531</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Applied physics ; Bandwidths ; Broadband ; Crystal structure ; Crystallography ; Dielectric loss ; Dispersants ; Dopants ; Magnetic permeability ; Magnetic properties ; Maleic anhydride ; Miniaturization ; Permeability ; Permittivity ; Process controls ; Size reduction ; Transition metals ; Ultrahigh frequencies ; Very high frequencies</subject><ispartof>Applied physics letters, 2020-05, Vol.116 (20)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-1f87c590b0ee275a133ecb8addd0f626c45580940e62dc4f0666bce8c40609203</citedby><cites>FETCH-LOGICAL-c308t-1f87c590b0ee275a133ecb8addd0f626c45580940e62dc4f0666bce8c40609203</cites><orcidid>0000-0002-4953-3065 ; 0000-0002-3461-1008 ; 0000-0001-6262-1804 ; 0000-0002-5517-1961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5144531$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Kulik, Piotr</creatorcontrib><creatorcontrib>Winter, Gavin</creatorcontrib><creatorcontrib>Sokolov, Alexander</creatorcontrib><creatorcontrib>Murphy, Katherine</creatorcontrib><creatorcontrib>Yu, Chengju</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Fitchorova, Ogheneyunume</creatorcontrib><creatorcontrib>Harris, Vincent G.</creatorcontrib><title>Broadband free space impedance in Co2Z hexaferrites by substitution of high valency heavy transition metal ions for miniaturized RF devices</title><title>Applied physics letters</title><description>Polycrystalline samples of Z-type hexaferrites, having nominal compositions Ba3Co2+xFe24−2xMxO41, where M = Ir, Hf, or Mo and x = 0 and 0.05, were processed via ceramic protocols in pursuit of low magnetic and dielectric losses, as well as equivalent permittivity and permeability over the VHF–UHF band. Fine process control was conducted to ensure optimal magnetic properties. Organic dispersants, i.e., isobutylene and maleic anhydride, were employed to achieve maximum densities. Crystallographic structure, characterized by x-ray diffraction, revealed that the dopants did not adversely affect the crystal structure and phase purity of the Z-type hexaferrite. An increase in permeability and size reduction factor is shown to be linearly proportional to the ionic radii of the dopants. This trend is consistent with local bonding distortions giving rise to increased exchange energy (J) as predicted by the Goodenough–Kanamori–Anderson rules and superexchange theory. We posit that these distortions increase the magnetocrystalline anisotropy energy affecting the frequency dependent complex permeability. For Mo doping of x = 0.05, a bandwidth of 400 MHz exists at a center frequency of 650 MHz where the permittivity and permeability are very nearly equal, i.e., Z = 377 ± 5 Ω. These results give rise to low loss, i.e., tan
δ
ε
/
ε
′ = 0.0006 and tan
δ
μ
/
μ
′ = 0.038 at 650 MHz, with considerable size reduction (×9). The miniaturization and optimized performance of magnetodielectric materials for antenna at VHF–UHF frequencies using cost-effective and volumetric processing methodologies are demonstrated.</description><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Dielectric loss</subject><subject>Dispersants</subject><subject>Dopants</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Maleic anhydride</subject><subject>Miniaturization</subject><subject>Permeability</subject><subject>Permittivity</subject><subject>Process controls</subject><subject>Size reduction</subject><subject>Transition metals</subject><subject>Ultrahigh frequencies</subject><subject>Very high frequencies</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M1KxDAQB_AgCq4fB98g4Emh66Rp0-5RF1cFQRC9eClpMnEju01N0uL6Cr60XVf0IHiaGfgxw_wJOWIwZiD4GRvnLMtyzrbIiEFRJJyxcpuMAIAnYpKzXbIXwssw5innI_Jx4Z3UtWw0NR6RhlYqpHbZopbNumvo1KVPdI5v0qD3NmKg9YqGrg7Rxi5a11Bn6Nw-z2kvF9io1YBlv6LRyybYL7DEKBd06AI1ztOlbayMnbfvqOn9jGrsrcJwQHaMXAQ8_K775HF2-TC9Tm7vrm6m57eJ4lDGhJmyUPkEakBMi1wyzlHVpdRagxGpUFmelzDJAEWqVWZACFErLFUGAiYp8H1yvNnbevfaYYjVi-t8M5ys0gyyomSs4IM62SjlXQgeTdV6u5R-VTGo1llXrPrOerCnGxuUjXL98g_unf-FVavNf_jv5k_lmI6g</recordid><startdate>20200518</startdate><enddate>20200518</enddate><creator>Kulik, Piotr</creator><creator>Winter, Gavin</creator><creator>Sokolov, Alexander</creator><creator>Murphy, Katherine</creator><creator>Yu, Chengju</creator><creator>Qian, Kun</creator><creator>Fitchorova, Ogheneyunume</creator><creator>Harris, Vincent G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4953-3065</orcidid><orcidid>https://orcid.org/0000-0002-3461-1008</orcidid><orcidid>https://orcid.org/0000-0001-6262-1804</orcidid><orcidid>https://orcid.org/0000-0002-5517-1961</orcidid></search><sort><creationdate>20200518</creationdate><title>Broadband free space impedance in Co2Z hexaferrites by substitution of high valency heavy transition metal ions for miniaturized RF devices</title><author>Kulik, Piotr ; Winter, Gavin ; Sokolov, Alexander ; Murphy, Katherine ; Yu, Chengju ; Qian, Kun ; Fitchorova, Ogheneyunume ; Harris, Vincent G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-1f87c590b0ee275a133ecb8addd0f626c45580940e62dc4f0666bce8c40609203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Dielectric loss</topic><topic>Dispersants</topic><topic>Dopants</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Maleic anhydride</topic><topic>Miniaturization</topic><topic>Permeability</topic><topic>Permittivity</topic><topic>Process controls</topic><topic>Size reduction</topic><topic>Transition metals</topic><topic>Ultrahigh frequencies</topic><topic>Very high frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulik, Piotr</creatorcontrib><creatorcontrib>Winter, Gavin</creatorcontrib><creatorcontrib>Sokolov, Alexander</creatorcontrib><creatorcontrib>Murphy, Katherine</creatorcontrib><creatorcontrib>Yu, Chengju</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Fitchorova, Ogheneyunume</creatorcontrib><creatorcontrib>Harris, Vincent G.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulik, Piotr</au><au>Winter, Gavin</au><au>Sokolov, Alexander</au><au>Murphy, Katherine</au><au>Yu, Chengju</au><au>Qian, Kun</au><au>Fitchorova, Ogheneyunume</au><au>Harris, Vincent G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband free space impedance in Co2Z hexaferrites by substitution of high valency heavy transition metal ions for miniaturized RF devices</atitle><jtitle>Applied physics letters</jtitle><date>2020-05-18</date><risdate>2020</risdate><volume>116</volume><issue>20</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Polycrystalline samples of Z-type hexaferrites, having nominal compositions Ba3Co2+xFe24−2xMxO41, where M = Ir, Hf, or Mo and x = 0 and 0.05, were processed via ceramic protocols in pursuit of low magnetic and dielectric losses, as well as equivalent permittivity and permeability over the VHF–UHF band. Fine process control was conducted to ensure optimal magnetic properties. Organic dispersants, i.e., isobutylene and maleic anhydride, were employed to achieve maximum densities. Crystallographic structure, characterized by x-ray diffraction, revealed that the dopants did not adversely affect the crystal structure and phase purity of the Z-type hexaferrite. An increase in permeability and size reduction factor is shown to be linearly proportional to the ionic radii of the dopants. This trend is consistent with local bonding distortions giving rise to increased exchange energy (J) as predicted by the Goodenough–Kanamori–Anderson rules and superexchange theory. We posit that these distortions increase the magnetocrystalline anisotropy energy affecting the frequency dependent complex permeability. For Mo doping of x = 0.05, a bandwidth of 400 MHz exists at a center frequency of 650 MHz where the permittivity and permeability are very nearly equal, i.e., Z = 377 ± 5 Ω. These results give rise to low loss, i.e., tan
δ
ε
/
ε
′ = 0.0006 and tan
δ
μ
/
μ
′ = 0.038 at 650 MHz, with considerable size reduction (×9). The miniaturization and optimized performance of magnetodielectric materials for antenna at VHF–UHF frequencies using cost-effective and volumetric processing methodologies are demonstrated.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5144531</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4953-3065</orcidid><orcidid>https://orcid.org/0000-0002-3461-1008</orcidid><orcidid>https://orcid.org/0000-0001-6262-1804</orcidid><orcidid>https://orcid.org/0000-0002-5517-1961</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-05, Vol.116 (20) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2404781173 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Anisotropy Applied physics Bandwidths Broadband Crystal structure Crystallography Dielectric loss Dispersants Dopants Magnetic permeability Magnetic properties Maleic anhydride Miniaturization Permeability Permittivity Process controls Size reduction Transition metals Ultrahigh frequencies Very high frequencies |
title | Broadband free space impedance in Co2Z hexaferrites by substitution of high valency heavy transition metal ions for miniaturized RF devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20free%20space%20impedance%20in%20Co2Z%20hexaferrites%20by%20substitution%20of%20high%20valency%20heavy%20transition%20metal%20ions%20for%20miniaturized%20RF%20devices&rft.jtitle=Applied%20physics%20letters&rft.au=Kulik,%20Piotr&rft.date=2020-05-18&rft.volume=116&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5144531&rft_dat=%3Cproquest_scita%3E2404781173%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-1f87c590b0ee275a133ecb8addd0f626c45580940e62dc4f0666bce8c40609203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404781173&rft_id=info:pmid/&rfr_iscdi=true |