Loading…

Taxonomic composition of mobile epifaunal invertebrate assemblages on diverse benthic microhabitats from temperate to tropical reefs

Anthropogenic drivers are flattening reef structure from 3-dimensional habitats composed of macroalgae and live branching corals towards low-profile turfing algae. Our current understanding of the consequences of widespread reef degradation currently fails to consider the responses of small mobile i...

Full description

Saved in:
Bibliographic Details
Published in:Marine ecology. Progress series (Halstenbek) 2020-04, Vol.640, p.31-43
Main Authors: Fraser, K. M., Stuart-Smith, R. D., Ling, S. D., Heather, F. J., Edgar, G. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anthropogenic drivers are flattening reef structure from 3-dimensional habitats composed of macroalgae and live branching corals towards low-profile turfing algae. Our current understanding of the consequences of widespread reef degradation currently fails to consider the responses of small mobile invertebrates (‘epifauna’) to patterns of change amongst reef structural elements (‘microhabitats’). Here, the taxonomic composition of 152 epifaunal assemblages was compared among 21 structurally diverse benthic microhabitats across an Australian temperate to tropical climatic gradient, spanning 28.6 degrees in latitude from Tasmania to the northern Great Barrier Reef. Epifauna varied consistently with different microhabitat types, and to a much lesser extent with latitude. Macroalgae, live branching coral and turfing algae represented 3 extremes for epifaunal community structure, with most microhabitats possessing epifaunal assemblages intermediate between these endpoints. Amongst structural characteristics, epifauna related primarily to the degree of branching and hardness of microhabitats. Mobile invertebrate communities are likely to transform in predictable ways with the collapse of large erect macroalgae and live coral towards low-lying turf-associated communities.
ISSN:0171-8630
1616-1599
DOI:10.3354/meps13295