Loading…
Application and Testing of the Extended-Kalman-Filtering Technique for Determining the Planetary Boundary-Layer Height over Athens, Greece
We investigate the temporal evolution of the planetary boundary-layer (PBL) height over the basin of Athens, Greece, during a 6-year period (2011–2016), using data from a Raman lidar system. The range-corrected lidar signals are selected around local noon (1200 UTC) and midnight (0000 UTC), for a to...
Saved in:
Published in: | Boundary-layer meteorology 2020-07, Vol.176 (1), p.125-147 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the temporal evolution of the planetary boundary-layer (PBL) height over the basin of Athens, Greece, during a 6-year period (2011–2016), using data from a Raman lidar system. The range-corrected lidar signals are selected around local noon (1200 UTC) and midnight (0000 UTC), for a total of 332 cases: 165 days and 167 nights. In this dataset, the extended-Kalman filtering technique is applied and tested for the determination of the PBL height. Several well-established techniques for the PBL height estimation based on lidar data are also tested for a total of 35 cases. The lidar-derived PBL heights are compared to those derived from radiosonde data. The mean PBL height over Athens is found to be 1617 ± 324 m at 1200 UTC and 892 ± 130 m at 0000 UTC for the period examined, while the mean PBL-height growth rate is found to be 170 ± 64 m h
−1
and 90 ± 17 m h
−1
during daytime and night-time, respectively. |
---|---|
ISSN: | 0006-8314 1573-1472 |
DOI: | 10.1007/s10546-020-00514-z |