Loading…
Application and Testing of the Extended-Kalman-Filtering Technique for Determining the Planetary Boundary-Layer Height over Athens, Greece
We investigate the temporal evolution of the planetary boundary-layer (PBL) height over the basin of Athens, Greece, during a 6-year period (2011–2016), using data from a Raman lidar system. The range-corrected lidar signals are selected around local noon (1200 UTC) and midnight (0000 UTC), for a to...
Saved in:
Published in: | Boundary-layer meteorology 2020-07, Vol.176 (1), p.125-147 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-9a1d99cc998aeb3eb8f7bab0ee16791d1ecda9c1d0243968b22232824df1e1b23 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-9a1d99cc998aeb3eb8f7bab0ee16791d1ecda9c1d0243968b22232824df1e1b23 |
container_end_page | 147 |
container_issue | 1 |
container_start_page | 125 |
container_title | Boundary-layer meteorology |
container_volume | 176 |
creator | Kokkalis, Panagiotis Alexiou, Dimitrios Papayannis, Alexandros Rocadenbosch, Francesc Soupiona, Ourania Raptis, Panagiotis-Ioannis Mylonaki, Maria Tzanis, Chris G. Christodoulakis, John |
description | We investigate the temporal evolution of the planetary boundary-layer (PBL) height over the basin of Athens, Greece, during a 6-year period (2011–2016), using data from a Raman lidar system. The range-corrected lidar signals are selected around local noon (1200 UTC) and midnight (0000 UTC), for a total of 332 cases: 165 days and 167 nights. In this dataset, the extended-Kalman filtering technique is applied and tested for the determination of the PBL height. Several well-established techniques for the PBL height estimation based on lidar data are also tested for a total of 35 cases. The lidar-derived PBL heights are compared to those derived from radiosonde data. The mean PBL height over Athens is found to be 1617 ± 324 m at 1200 UTC and 892 ± 130 m at 0000 UTC for the period examined, while the mean PBL-height growth rate is found to be 170 ± 64 m h
−1
and 90 ± 17 m h
−1
during daytime and night-time, respectively. |
doi_str_mv | 10.1007/s10546-020-00514-z |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2405451934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624634608</galeid><sourcerecordid>A624634608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-9a1d99cc998aeb3eb8f7bab0ee16791d1ecda9c1d0243968b22232824df1e1b23</originalsourceid><addsrcrecordid>eNp9kcuOFCEUhonRxHb0BVyRuJWRW11YtuNcjJ3ool0TCk51M6mGEuiJM4_gU0tZJu4MCw6H_zsczo_QW0YvGaXdh8xoI1tCOSWUNkySp2dow5pOECY7_hxtKKUt6QWTL9GrnO_rsWMN3aBf23mevDXFx4BNcHgPufhwwHHE5Qj4-meB4MCRL2Y6mUBu_FQgLYI92GPwP86Ax5jwJ6jpkw_LzcJ9m0yAYtIj_hjPwdWA7MwjJHwH_nAsOD7UeFuVIb_HtwnAwmv0YjRThjd_9wv0_eZ6f3VHdl9vP19td8RKygtRhjmlrFWqNzAIGPqxG8xAAVjbKeYYWGeUZY5yKVTbD5xzwXsu3ciADVxcoHdr3TnF2n4u-j6eU6hPai7rGBumhKyqy1V1MBNoH8ZYkrF1OTh5GwOMvua3LZetkC3tK8BXwKaYc4JRz8mf6sc1o3oxSa8m6WqS_mOSfqqQWKE8L0OF9K-X_1C_ARL_lsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405451934</pqid></control><display><type>article</type><title>Application and Testing of the Extended-Kalman-Filtering Technique for Determining the Planetary Boundary-Layer Height over Athens, Greece</title><source>Springer Nature</source><creator>Kokkalis, Panagiotis ; Alexiou, Dimitrios ; Papayannis, Alexandros ; Rocadenbosch, Francesc ; Soupiona, Ourania ; Raptis, Panagiotis-Ioannis ; Mylonaki, Maria ; Tzanis, Chris G. ; Christodoulakis, John</creator><creatorcontrib>Kokkalis, Panagiotis ; Alexiou, Dimitrios ; Papayannis, Alexandros ; Rocadenbosch, Francesc ; Soupiona, Ourania ; Raptis, Panagiotis-Ioannis ; Mylonaki, Maria ; Tzanis, Chris G. ; Christodoulakis, John</creatorcontrib><description>We investigate the temporal evolution of the planetary boundary-layer (PBL) height over the basin of Athens, Greece, during a 6-year period (2011–2016), using data from a Raman lidar system. The range-corrected lidar signals are selected around local noon (1200 UTC) and midnight (0000 UTC), for a total of 332 cases: 165 days and 167 nights. In this dataset, the extended-Kalman filtering technique is applied and tested for the determination of the PBL height. Several well-established techniques for the PBL height estimation based on lidar data are also tested for a total of 35 cases. The lidar-derived PBL heights are compared to those derived from radiosonde data. The mean PBL height over Athens is found to be 1617 ± 324 m at 1200 UTC and 892 ± 130 m at 0000 UTC for the period examined, while the mean PBL-height growth rate is found to be 170 ± 64 m h
−1
and 90 ± 17 m h
−1
during daytime and night-time, respectively.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-020-00514-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Boundary layer height ; Earth and Environmental Science ; Earth Sciences ; Growth rate ; Height ; Kalman filters ; Lidar ; Meteorology ; Methods ; Optical radar ; Planetary evolution ; Radiosonde data ; Radiosondes ; Remote sensing ; Research Article</subject><ispartof>Boundary-layer meteorology, 2020-07, Vol.176 (1), p.125-147</ispartof><rights>Springer Nature B.V. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-9a1d99cc998aeb3eb8f7bab0ee16791d1ecda9c1d0243968b22232824df1e1b23</citedby><cites>FETCH-LOGICAL-c402t-9a1d99cc998aeb3eb8f7bab0ee16791d1ecda9c1d0243968b22232824df1e1b23</cites><orcidid>0000-0001-5231-5491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kokkalis, Panagiotis</creatorcontrib><creatorcontrib>Alexiou, Dimitrios</creatorcontrib><creatorcontrib>Papayannis, Alexandros</creatorcontrib><creatorcontrib>Rocadenbosch, Francesc</creatorcontrib><creatorcontrib>Soupiona, Ourania</creatorcontrib><creatorcontrib>Raptis, Panagiotis-Ioannis</creatorcontrib><creatorcontrib>Mylonaki, Maria</creatorcontrib><creatorcontrib>Tzanis, Chris G.</creatorcontrib><creatorcontrib>Christodoulakis, John</creatorcontrib><title>Application and Testing of the Extended-Kalman-Filtering Technique for Determining the Planetary Boundary-Layer Height over Athens, Greece</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>We investigate the temporal evolution of the planetary boundary-layer (PBL) height over the basin of Athens, Greece, during a 6-year period (2011–2016), using data from a Raman lidar system. The range-corrected lidar signals are selected around local noon (1200 UTC) and midnight (0000 UTC), for a total of 332 cases: 165 days and 167 nights. In this dataset, the extended-Kalman filtering technique is applied and tested for the determination of the PBL height. Several well-established techniques for the PBL height estimation based on lidar data are also tested for a total of 35 cases. The lidar-derived PBL heights are compared to those derived from radiosonde data. The mean PBL height over Athens is found to be 1617 ± 324 m at 1200 UTC and 892 ± 130 m at 0000 UTC for the period examined, while the mean PBL-height growth rate is found to be 170 ± 64 m h
−1
and 90 ± 17 m h
−1
during daytime and night-time, respectively.</description><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Boundary layer height</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Growth rate</subject><subject>Height</subject><subject>Kalman filters</subject><subject>Lidar</subject><subject>Meteorology</subject><subject>Methods</subject><subject>Optical radar</subject><subject>Planetary evolution</subject><subject>Radiosonde data</subject><subject>Radiosondes</subject><subject>Remote sensing</subject><subject>Research Article</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcuOFCEUhonRxHb0BVyRuJWRW11YtuNcjJ3ool0TCk51M6mGEuiJM4_gU0tZJu4MCw6H_zsczo_QW0YvGaXdh8xoI1tCOSWUNkySp2dow5pOECY7_hxtKKUt6QWTL9GrnO_rsWMN3aBf23mevDXFx4BNcHgPufhwwHHE5Qj4-meB4MCRL2Y6mUBu_FQgLYI92GPwP86Ax5jwJ6jpkw_LzcJ9m0yAYtIj_hjPwdWA7MwjJHwH_nAsOD7UeFuVIb_HtwnAwmv0YjRThjd_9wv0_eZ6f3VHdl9vP19td8RKygtRhjmlrFWqNzAIGPqxG8xAAVjbKeYYWGeUZY5yKVTbD5xzwXsu3ciADVxcoHdr3TnF2n4u-j6eU6hPai7rGBumhKyqy1V1MBNoH8ZYkrF1OTh5GwOMvua3LZetkC3tK8BXwKaYc4JRz8mf6sc1o3oxSa8m6WqS_mOSfqqQWKE8L0OF9K-X_1C_ARL_lsQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kokkalis, Panagiotis</creator><creator>Alexiou, Dimitrios</creator><creator>Papayannis, Alexandros</creator><creator>Rocadenbosch, Francesc</creator><creator>Soupiona, Ourania</creator><creator>Raptis, Panagiotis-Ioannis</creator><creator>Mylonaki, Maria</creator><creator>Tzanis, Chris G.</creator><creator>Christodoulakis, John</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5231-5491</orcidid></search><sort><creationdate>20200701</creationdate><title>Application and Testing of the Extended-Kalman-Filtering Technique for Determining the Planetary Boundary-Layer Height over Athens, Greece</title><author>Kokkalis, Panagiotis ; Alexiou, Dimitrios ; Papayannis, Alexandros ; Rocadenbosch, Francesc ; Soupiona, Ourania ; Raptis, Panagiotis-Ioannis ; Mylonaki, Maria ; Tzanis, Chris G. ; Christodoulakis, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-9a1d99cc998aeb3eb8f7bab0ee16791d1ecda9c1d0243968b22232824df1e1b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Boundary layer height</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Growth rate</topic><topic>Height</topic><topic>Kalman filters</topic><topic>Lidar</topic><topic>Meteorology</topic><topic>Methods</topic><topic>Optical radar</topic><topic>Planetary evolution</topic><topic>Radiosonde data</topic><topic>Radiosondes</topic><topic>Remote sensing</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kokkalis, Panagiotis</creatorcontrib><creatorcontrib>Alexiou, Dimitrios</creatorcontrib><creatorcontrib>Papayannis, Alexandros</creatorcontrib><creatorcontrib>Rocadenbosch, Francesc</creatorcontrib><creatorcontrib>Soupiona, Ourania</creatorcontrib><creatorcontrib>Raptis, Panagiotis-Ioannis</creatorcontrib><creatorcontrib>Mylonaki, Maria</creatorcontrib><creatorcontrib>Tzanis, Chris G.</creatorcontrib><creatorcontrib>Christodoulakis, John</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kokkalis, Panagiotis</au><au>Alexiou, Dimitrios</au><au>Papayannis, Alexandros</au><au>Rocadenbosch, Francesc</au><au>Soupiona, Ourania</au><au>Raptis, Panagiotis-Ioannis</au><au>Mylonaki, Maria</au><au>Tzanis, Chris G.</au><au>Christodoulakis, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application and Testing of the Extended-Kalman-Filtering Technique for Determining the Planetary Boundary-Layer Height over Athens, Greece</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>176</volume><issue>1</issue><spage>125</spage><epage>147</epage><pages>125-147</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>We investigate the temporal evolution of the planetary boundary-layer (PBL) height over the basin of Athens, Greece, during a 6-year period (2011–2016), using data from a Raman lidar system. The range-corrected lidar signals are selected around local noon (1200 UTC) and midnight (0000 UTC), for a total of 332 cases: 165 days and 167 nights. In this dataset, the extended-Kalman filtering technique is applied and tested for the determination of the PBL height. Several well-established techniques for the PBL height estimation based on lidar data are also tested for a total of 35 cases. The lidar-derived PBL heights are compared to those derived from radiosonde data. The mean PBL height over Athens is found to be 1617 ± 324 m at 1200 UTC and 892 ± 130 m at 0000 UTC for the period examined, while the mean PBL-height growth rate is found to be 170 ± 64 m h
−1
and 90 ± 17 m h
−1
during daytime and night-time, respectively.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-020-00514-z</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-5231-5491</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8314 |
ispartof | Boundary-layer meteorology, 2020-07, Vol.176 (1), p.125-147 |
issn | 0006-8314 1573-1472 |
language | eng |
recordid | cdi_proquest_journals_2405451934 |
source | Springer Nature |
subjects | Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Boundary layer height Earth and Environmental Science Earth Sciences Growth rate Height Kalman filters Lidar Meteorology Methods Optical radar Planetary evolution Radiosonde data Radiosondes Remote sensing Research Article |
title | Application and Testing of the Extended-Kalman-Filtering Technique for Determining the Planetary Boundary-Layer Height over Athens, Greece |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20and%20Testing%20of%20the%20Extended-Kalman-Filtering%20Technique%20for%20Determining%20the%20Planetary%20Boundary-Layer%20Height%20over%20Athens,%20Greece&rft.jtitle=Boundary-layer%20meteorology&rft.au=Kokkalis,%20Panagiotis&rft.date=2020-07-01&rft.volume=176&rft.issue=1&rft.spage=125&rft.epage=147&rft.pages=125-147&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1007/s10546-020-00514-z&rft_dat=%3Cgale_proqu%3EA624634608%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-9a1d99cc998aeb3eb8f7bab0ee16791d1ecda9c1d0243968b22232824df1e1b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2405451934&rft_id=info:pmid/&rft_galeid=A624634608&rfr_iscdi=true |