Loading…
Marine connectivity in spatial conservation planning: analogues from the terrestrial realm
Context Spatial prioritization is an analytical approach that can be used to provide decision support in spatial conservation planning (SCP), and in tasks such as conservation area network design, zoning, planning for impact avoidance or targeting of habitat management or restoration. Methods Based...
Saved in:
Published in: | Landscape ecology 2020-05, Vol.35 (5), p.1021-1034 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Context
Spatial prioritization is an analytical approach that can be used to provide decision support in spatial conservation planning (SCP), and in tasks such as conservation area network design, zoning, planning for impact avoidance or targeting of habitat management or restoration.
Methods
Based on literature, we summarize the role of connectivity as one component of relevance in the broad structure of spatial prioritization in both marine and terrestrial realms.
Results
Partially diffuse, directed connectivity can be approximated in Zonation-based multi-criteria SCP by applying hydrodynamic modelling, knowledge on species traits, and information on species occurrences and quality of habitats. Sources and destinations of larvae or propagules can be identified as separate spatial layers and taken into account in full-scale spatial prioritization involving data on biota, as well as economic factors, threats, and administrative constraints. While population connectivity is an important determinant of metapopulation persistence, the importance of marine connectivity depends on species traits and the marine environment studied. At one end of the continuum are species that occupy isolated habitats and have long pelagic larval durations in deeper sea areas with strong directional currents. At the other extreme are species with short pelagic durations that occupy fragmented habitats in shallow topographically complex sea areas with weak and variable currents.
Conclusions
We conclude that the same objectives, methods, and analysis structures are applicable to both terrestrial and marine spatial prioritization. Marine spatial conservation planning, marine spatial planning, marine zoning, etc., can be implemented using methods originated in the terrestrial realm of planning. |
---|---|
ISSN: | 0921-2973 1572-9761 |
DOI: | 10.1007/s10980-020-00997-8 |